bims-mecosi Biomed News
on Membrane contact sites
Issue of 2023–08–20
four papers selected by
Verena Kohler, University of Graz



  1. Mol Biol Cell. 2023 Aug 16. mbcE23050168
      Mitochondrial division is critical for maintenance of mitochondrial morphology and cellular homeostasis. Previous work has suggested that the mitochondria-ER-cortex anchor (MECA), a tripartite membrane contact site between mitochondria, the ER, and the plasma membrane, is involved in mitochondrial division. However, its role is poorly understood. We developed a system to control MECA formation and depletion, which allowed us to investigate the relationship between MECA-mediated contact sites and mitochondrial division. Num1 is the protein that mediates mitochondria-ER-plasma membrane tethering at MECA sites. Using both rapamycin-inducible dimerization and auxin-inducible degradation components coupled with Num1, we developed systems to temporally control the formation and depletion of the native contact site. Additionally, we designed a regulatable Num1-independant mitochondria-PM tether. We found that mitochondria-PM tethering alone is not sufficient to rescue mitochondrial division and that a specific feature of Num1-mediated tethering is required. This study demonstrates the utility of systems that regulate contact site formation and depletion in studying the biological functions of membrane contact sites. [Media: see text] [Media: see text].
    DOI:  https://doi.org/10.1091/mbc.E23-05-0168
  2. Front Neurosci. 2023 ;17 1249815
      This review uncovers the intricate relationship between presenilins, calcium, and mitochondria in the context of Alzheimer's disease (AD), with a particular focus on the involvement of presenilin mutations in mitochondrial dysfunction. So far, it is unclear whether the impairment of mitochondrial function arises primarily from damage inflicted by β-amyloid upon mitochondria or from the disruption of calcium homeostasis due to presenilins dysfunctions. The roles of presenilins in mitophagy, autophagy, mitochondrial dynamics, and many other functions, non-γ-secretase related, also require close attention in future research. Resolution of contradictions in understanding of presenilins cellular functions are needed for new effective therapeutic strategies for AD.
    Keywords:  Alzheimer’s disease; mitochondria associated membranes; neurodegeneration; presenilins; spine apparatus
    DOI:  https://doi.org/10.3389/fnins.2023.1249815
  3. Poult Sci. 2023 Aug 03. pii: S0032-5791(23)00525-4. [Epub ahead of print]102(10): 103006
      The present study aimed to investigate the mechanism of microRNA-129-1-3p (miR-129-1-3p) in regulating hydrogen peroxide (H2O2)-induced autophagic death of chicken granulosa cell by targeting mitochondrial calcium uniporter (MCU). The results indicated that the exposure of hens' ovaries to H2O2 resulted in a significant elevation in reactive oxygen species (ROS) levels, as well as the apoptosis of granulosa cells and follicular atresia. This was accompanied by an upregulation of glucose-regulated protein 75 (GRP75), voltage-dependent anion-selective channel 1 (VDAC1), MCU, mitochondria fission factor (MFF), microtubule-associated protein 1 light chain 3 (LC3) I, and LC3II expression, and a downregulation of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and mitofusin-2 (MFN2) expression. In hens' granulosa cells, a luciferase reporter assay confirmed that miR-129-1-3p directly regulates MCU. The induction of oxidative stress through H2O2 resulted in the activation of the permeability transition pore, an overload of calcium, depolarization of the mitochondrial membrane potential, dysfunction of mitochondria-associated endoplasmic reticulum membranes (MAMs), and ultimately, autophagic cell death. The overexpression of miR-129-1-3p effectively mitigated these H2O2-induced changes. Furthermore, miR-129-1-3p overexpression in granulosa cells prevented the alterations induced by H2O2 in the expression of key proteins that play crucial roles in maintaining the integrity of MAMs and regulating autophagy, such as GRP75, VDAC1, MFN2, PTEN-induced kinase 1 (Pink1), and parkin RBR E3 ubiquitin-protein ligase (Parkin). Together, these in vitro- and in vivo-based experiments suggest that miR-129-1-3p protects granulosa cells from oxidative stress-induced autophagic cell death by downregulating the MCU-mediated mitochondrial autophagy. miR-129-1-3p/MCU calcium signaling pathway may act as a new target to alleviate follicular atresia caused by oxidative stress in laying hens.
    Keywords:  MCU; granulosa cell autophagy; laying hens; microRNA-129-1-3p; oxidative stress
    DOI:  https://doi.org/10.1016/j.psj.2023.103006
  4. Front Physiol. 2023 ;14 1210085
      Cytosolic Ca2+ signals are organized in complex spatial and temporal patterns that underlie their unique ability to regulate multiple cellular functions. Changes in intracellular Ca2+ concentration ([Ca2+]i) are finely tuned by the concerted interaction of membrane receptors and ion channels that introduce Ca2+ into the cytosol, Ca2+-dependent sensors and effectors that translate the elevation in [Ca2+]i into a biological output, and Ca2+-clearing mechanisms that return the [Ca2+]i to pre-stimulation levels and prevent cytotoxic Ca2+ overload. The assortment of the Ca2+ handling machinery varies among different cell types to generate intracellular Ca2+ signals that are selectively tailored to subserve specific functions. The advent of novel high-speed, 2D and 3D time-lapse imaging techniques, single-wavelength and genetic Ca2+ indicators, as well as the development of novel genetic engineering tools to manipulate single cells and whole animals, has shed novel light on the regulation of cellular activity by the Ca2+ handling machinery. A symposium organized within the framework of the 72nd Annual Meeting of the Italian Society of Physiology, held in Bari on 14-16th September 2022, has recently addressed many of the unexpected mechanisms whereby intracellular Ca2+ signalling regulates cellular fate in healthy and disease states. Herein, we present a report of this symposium, in which the following emerging topics were discussed: 1) Regulation of water reabsorption in the kidney by lysosomal Ca2+ release through Transient Receptor Potential Mucolipin 1 (TRPML1); 2) Endoplasmic reticulum-to-mitochondria Ca2+ transfer in Alzheimer's disease-related astroglial dysfunction; 3) The non-canonical role of TRP Melastatin 8 (TRPM8) as a Rap1A inhibitor in the definition of some cancer hallmarks; and 4) Non-genetic optical stimulation of Ca2+ signals in the cardiovascular system.
    Keywords:  Ca2+ signalling; TRP channels; lysosomal Ca2+; mitochondria-ER contact sites; non-canonical signalling; optical stimulation
    DOI:  https://doi.org/10.3389/fphys.2023.1210085