bims-mecosi Biomed News
on Membrane contact sites
Issue of 2024–06–02
five papers selected by
Verena Kohler, Umeå University



  1. Food Funct. 2024 May 28.
      Deoxynivalenol (DON) pollution is prevalent in crops, and can induce oxidative stress and intestinal injury. Hesperidin is one of the major flavonoids in citrus fruits that has various biological activities such as antioxidant and anti-inflammatory activities. However, whether hesperidin could alleviate DON-induced intestinal injury and the mechanism remain unclear. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) have attracted attention for their crucial signaling points to regulate ER-mitochondria calcium transfer. This study aims to evaluate the effects of hesperidin on the intestinal barrier, mitochondrial function, MAMs, and inositol 1,4,5-triphosphate receptor (IP3R)-mitochondrial calcium uniporter (MCU) calcium axis in the intestine of piglets exposed to DON. Twenty-four piglets were randomly divided into four groups in a 2 × 2 factorial arrangement for a 21-d experiment: Control: basal diet; hesperidin group: basal diet + 300 mg kg-1 hesperidin; DON: basal diet + 1.5 mg kg-1 DON; DON + hesperidin group: basal diet + 1.5 mg kg-1 DON + 300 mg kg-1 hesperidin. The data showed that when compared with the DON group, hesperidin improved growth performance and the intestinal barrier, alleviated intestinal oxidative stress and ER stress, and decreased the serum alanine aminotransferase (ALT) level (P < 0.05). Hesperidin also alleviated mitochondrial dysfunction and ferroptosis in the intestine of piglets exposed to DON (P < 0.05). Importantly, hesperidin prevented excessive MAM formation by downregulating the protein levels of Mitofusin 2 (Mfn2) and glucose-regulated protein 75 (GRP75), decreasing the ratio of the mitochondria with MAMs/total mitochondria and the ratio of MAM length/mitochondrial perimeter and lengthening the mitochondria-ER distance in MAMs (P < 0.05). Furthermore, hesperidin regulated the IP3R-glucose-regulated protein 75 (GRP75)-voltage-dependent anion channel 1 (VDAC1)-MCU calcium axis by decreasing the protein levels of GRP75 and MCU and the calcium level of the mitochondria compared with the DON group (P < 0.05). An in vitro experiment was conducted to further explore whether IP3R-mediated ER-mitochondria calcium transfer was involved in the protective effects of hesperidin on the intestinal epithelium barrier and mitochondria. Data showed that hesperidin may exert protective effects on the intestinal epithelium barrier and mitochondria via inhibiting ER-mitochondrial calcium transfer mediated by IP3Rs. These data suggested that hesperidin could alleviate MAM-mediated mitochondrial calcium overload, thereby improving mitochondrial function and alleviating oxidative stress and intestinal injury in DON-challenged piglets.
    DOI:  https://doi.org/10.1039/d4fo00783b
  2. bioRxiv. 2024 May 15. pii: 2024.05.14.592021. [Epub ahead of print]
      Peripheral endoplasmic reticulum (ER) tubules move along microtubules to interact with various organelles through membrane contact sites (MCS). Traditionally, ER moves by either sliding along stable microtubules via molecular motors or attaching to the plus ends of dynamic microtubules through tip attachment complexes (TAC). A recently discovered third process, hitchhiking, involves motile vesicles pulling ER tubules along microtubules. Previous research showed that ER hitchhikes on Rab5- and Rab7-marked endosomes, but it is uncertain if other Rab-vesicles can do the same. In U2OS cells, we screened Rabs for their ability to cotransport with ER tubules and found that ER hitchhikes on post-Golgi vesicles marked by Rab6 (isoforms a and b). Rab6-ER hitchhiking occurs independently of ER-endolysosome contacts and TAC-mediated ER movement. Disrupting either Rab6 or the motility of Rab6-vesicles reduces overall ER movement. Conversely, relocating these vesicles to the cell periphery causes peripheral ER accumulation, indicating that Rab6-vesicle motility is crucial for a subset of ER movements. Proximal post-Golgi vesicles marked by TGN46 are involved in Rab6-ER hitchhiking, while other post-Golgi vesicles (Rabs 8/10/11/13/14) are not essential for ER movement. Our further analysis finds that ER to Golgi vesicles marked by Rab1 are also capable of driving a subset of ER movements. Taken together, our findings suggest that ER hitchhiking on Rab-vesicles is a significant mode of ER movement.
    SIGNIFICANCE STATEMENT: Peripheral endoplasmic reticulum tubules move on microtubules by either attaching to motors (cargo adaptor-mediated), dynamic microtubule-plus ends (tip attachment complexes) or motile vesicles (hitchhiking) but the prevalence of each mode is not clearPost-Golgi vesicles marked by Rab6/TGN46 and ER to Golgi vesicles marked by Rab1 drive ER movementsER hitchhiking on multiple classes of vesicles (endolysosomal, post-Golgi and ER to Golgi) marked by Rabs plays a prominent role in ER movement.
    DOI:  https://doi.org/10.1101/2024.05.14.592021
  3. Contact (Thousand Oaks). 2024 Jan-Dec;7:7 25152564241255782
      One means by which cells reutilize neutral lipids stored in lipid droplets is to degrade them by autophagy. This process involves spartin, mutations of which cause the rare inherited disorder Troyer syndrome (or spastic paraplegia-20, SPG20). A recently published paper from the team led by Karin Reinsich (Yale) suggests that the molecular function of spartin and its unique highly conserved "senescence" domain is as a lipid transfer protein. Spartin binds to and transfers all lipid species found in lipid droplets, from phospholipids to triglycerides and sterol esters. This lipid transfer activity correlates with spartin's ability to sustain lipid droplet turnover. The senescence domain poses an intriguing question around the wide range of its cargoes, but intriguingly it has yet to yield up its secrets because attempts at crystallization failed and AlphaFold's prediction is unconvincing.
    Keywords:  autophagy; lipophagy; lysophagy; membrane contact sites; spastin
    DOI:  https://doi.org/10.1177/25152564241255782
  4. J Cardiovasc Transl Res. 2024 May 28.
      Organelle damage is a significant contributor to myocardial ischemia/reperfusion (I/R) injury. This damage often leads to disruption of endoplasmic reticulum protein regulatory programs and dysfunction of mitochondrial energy metabolism. Mitochondria and endoplasmic reticulum are seamlessly connected through the mitochondrial-associated endoplasmic reticulum membrane (MAM), which serves as a crucial site for the exchange of organelles and metabolites. However, there is a lack of reports regarding the communication of information and metabolites between mitochondria and related organelles, which is a crucial factor in triggering myocardial I/R damage. To address this research gap, this review described the role of crosstalk between mitochondria and the correlative organelles such as endoplasmic reticulum, lysosomal and nuclei involved in reperfusion injury of the heart. In summary, this review aims to provide a comprehensive understanding of the crosstalk between organelles in myocardial I/R injury, with the ultimate goal of facilitating the development of targeted therapies based on this knowledge.
    Keywords:  Cell nucleus; Lysosomes; Mitochondria; Mitochondria-associated endoplasmic reticulum membrane (MAM); Myocardial ischemia/reperfusion (I/R) injury; Organelle crosstalk
    DOI:  https://doi.org/10.1007/s12265-024-10523-9