bims-medica Biomed News
on Metabolism and diet in cancer
Issue of 2023–12–03
twenty-six papers selected by
Brett Chrest, East Carolina University



  1. Biomed Pharmacother. 2023 Nov 30. pii: S0753-3322(23)01754-7. [Epub ahead of print]170 115956
      Ovarian cancer is one of the most lethal cancers in female reproductive system due to heterogeneity and lack of effective treatment. Targeting aerobic glycolysis, a predominant energy metabolism of cancer cells has been recognized a novel strategy to overcome cancer cell growth. However, the capability of cancer cells to undergo metabolic reprogramming guarantees their survival even when glycolysis is inhibited. Here in this study, we have shown that Cryptotanshinone (CT), a lipid-soluble bioactive anticancer molecule of Salvia miltiorrhiza, inhibits both glycolysis and oxidative phosphorylation (OXPHOS) in ovarian cancer cells leading to growth suppression and apoptosis induction. Our mechanistic study revealed that CT decreased glucose uptake and lactate production, and inhibited the kinase activity of LDHA and HK2. The molecular docking study showed that CT could directly bind with GLUT1, LDHA, HK2, PKM2 and complex-1. The immunoblotting data showed that CT decreased the expression of aberrantly activated glycolytic proteins includingGLUT1, LDHA, HK2, and PKM2. Besides, we found that CT inhibited mitochondrial ComplexⅠ activity, decreased the ratio of NAD+/NADH, and suppressed the generation of ATP and induced activation of AMPK, which controls energy-reducing processes. These in vitro findings were further validated using xenograft model. The findings of in vivo studies were in line with in vitro studies. Taken together, CT effectively suppressed glycolysis and OXPHOS, inhibited growth and induced apoptosis in ovarian cancer cells both in vitro and in vivo study models.
    Keywords:  Apoptosis; Cryptotanshinone; Glycolysis; Ovarian cancer; Oxidative phosphorylation
    DOI:  https://doi.org/10.1016/j.biopha.2023.115956
  2. Oncotarget. 2023 Dec 01. 14 947-948
      
    Keywords:  acute myeloid leukemia; complex II; metabolism; mitochondria; reductive carboxylation
    DOI:  https://doi.org/10.18632/oncotarget.28474
  3. Cell Death Dis. 2023 Nov 30. 14(11): 784
      Medulloblastoma is a cancerous brain tumor that affects mostly children. Among the four groups defined by molecular characteristics, Group 3, the least well characterized, is also the least favorable, with a survival rate of 50%. Current treatments, based on surgery, radiotherapy, and chemotherapy, are not adequate and the lack of understanding of the different molecular features of Group 3 tumor cells makes the development of effective therapies challenging. In this study, the problem of medulloblastoma is approached from a metabolic standpoint in a low oxygen microenvironment. We establish that Group 3 cells use both the mitochondrial glycerol-3 phosphate (G3PS) and malate-aspartate shuttles (MAS) to produce NADH. Small molecules that target G3PS and MAS show a greater ability to decrease cell proliferation and induce apoptosis specifically of Group 3 cells. In addition, as Group 3 cells show improved respiration in hypoxia, the use of Phenformin, a mitochondrial complex 1 inhibitor, alone or in combination, induced significant cell death. Furthermore, inhibition of the cytosolic NAD+ recycling enzyme lactate dehydrogenase A (LDHA), enhanced the effects of the NADH shuttle inhibitors. In a 3D model using Group 3 human cerebellar organoids, tumor cells also underwent apoptosis upon treatment with NADH shuttle inhibitors. Our study demonstrates metabolic heterogeneity depending on oxygen concentrations and provides potential therapeutic solutions for patients in Group 3 whose tumors are the most aggressive.
    DOI:  https://doi.org/10.1038/s41419-023-06275-0
  4. Oncotarget. 2023 Dec 01. 14 957-969
      Metastasizing cells display a unique metabolism, which is very different from the Warburg effect that arises in primary tumors. Over short time frames, oxidative phosphorylation and ATP generation are prominent. Over longer time frames, mitochondrial biogenesis becomes a pronounced feature and aids metastatic success. It has not been known whether or how these two phenomena are connected. We hypothesized that Osteopontin splice variants, which synergize to increase ATP levels in deadherent cells, also increase the mitochondrial mass via the same signaling mechanisms. Here, we report that autocrine Osteopontin does indeed stimulate an increase in mitochondrial size, with the splice variant -c being more effective than the full-length form -a. Osteopontin-c achieves this via its receptor CD44v, jointly with the upregulation and co-ligation of the chloride-dependent cystine-glutamate transporter SLC7A11. The signaling proceeds through activation of the known mitochondrial biogenesis inducer PGC-1 (which acts as a transcription coactivator). Peroxide is an important intermediate in this cascade, but surprisingly acts upstream of PGC-1 and is likely produced as a consequence of SLC7A11 recruitment and activation. In vivo, suppression of the biogenesis-inducing mechanisms leads to a reduction in disseminated tumor mass. This study confirms a functional connection between the short-term oxidative metabolism and the longer-term mitochondrial biogenesis in cancer metastasis - both are induced by Osteopontin-c. The results imply possible mechanisms and targets for treating cancer metastasis.
    Keywords:  anchorage independence; metabolism; metastasis; mitochondrial mass; peroxide
    DOI:  https://doi.org/10.18632/oncotarget.28540
  5. bioRxiv. 2023 Nov 16. pii: 2023.11.14.566937. [Epub ahead of print]
      Telomerase reverse transcriptase (TERT) is essential for glioblastoma (GBM) proliferation. Delineating metabolic vulnerabilities induced by TERT can lead to novel GBM therapies. We previously showed that TERT upregulates glutathione (GSH) pool size in GBMs. Here, we show that TERT acts via the FOXO1 transcription factor to upregulate expression of the catalytic subunit of glutamate-cysteine ligase (GCLC), the rate-limiting enzyme of de novo GSH synthesis. Inhibiting GCLC using siRNA or buthionine sulfoximine (BSO) reduces synthesis of 13 C-GSH from [U- 13 C]-glutamine and inhibits clonogenicity. However, GCLC inhibition does not induce cell death, an effect that is associated with elevated [U- 13 C]-glutamine metabolism to glutamate and pyrimidine nucleotide biosynthesis. Mechanistically, GCLC inhibition activates MYC and leads to compensatory upregulation of two key glutamine-utilizing enzymes i.e., glutaminase (GLS), which generates glutamate from glutamine, and CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, dihydroorotatase), the enzyme that converts glutamine to the pyrimidine nucleotide precursor dihydroorotate. We then examined the therapeutic potential of inhibiting GLS and CAD in combination with GCLC. 6-diazo-5-oxy-L-norleucin (DON) is a potent inhibitor of glutamine-utilizing enzymes including GLS and CAD. The combination of BSO and DON suppresses GSH and pyrimidine nucleotide biosynthesis and is synergistically lethal in GBM cells. Importantly, in vivo stable isotope tracing indicates that combined treatment with JHU-083 (a brain-penetrant prodrug of DON) and BSO abrogates synthesis of GSH and pyrimidine nucleotides from [U- 13 C]-glutamine and induces tumor shrinkage in mice bearing intracranial GBM xenografts. Collectively, our studies exploit a mechanistic understanding of TERT biology to identify synthetically lethal metabolic vulnerabilities in GBMs.
    SIGNIFICANCE: Using in vivo stable isotope tracing, metabolomics, and loss-of-function studies, we demonstrate that TERT expression is associated with metabolic alterations that can be synergistically targeted for therapy in glioblastomas.
    DOI:  https://doi.org/10.1101/2023.11.14.566937
  6. Fed Pract. 2023 Aug;40(Suppl 3): S98-S104
       Background: A high-fat, moderate-protein, low-carbohydrate ketogenic diet has been reported in the literature as a treatment option for patients with cancer.
    Case Presentation: A 69-year-old veteran was initially diagnosed with stage III colorectal cancer and progressed to having liver, pancreatic, and omental lymph node involvement despite completing adjuvant FOLFOX (fluorouracil, leucovorin calcium, and oxaliplatin) after surgery. The patient was treated with FOLFIRI (fluorouracil, leucovorin calcium, and irinotecan hydrochloride) and bevacizumab, followed by encorafenib and cetuximab on progression. Subsequently, he received pembrolizumab but continued to progress. The patient was later placed on trifluridine/tipiracil and bevacizumab concurrent with a ketogenic diet. Positron emission tomography and carcinoembryonic antigen levels indicated disease stabilization for 10 months. On progression, the patient was transitioned to ipilumimab and nivolumab and continued to adhere to the ketogenic diet. The patient's disease has continued to remain stable for the past 1 year. His degree of ketosis was determined using the glucose ketone index. The patient continues to have a good quality of life during concurrent ketogenic diet and therapy.
    Conclusions: This case supports the tolerability of the ketogenic diet along with chemotherapy and immunotherapy and should be considered as an adjunct to standard cancer treatment. In this report, we reviewed the latest literature about cellular mechanism of the ketogenic diet and the efficacy and relationship with chemotherapy and immunotherapy. We are about to open a ketogenic diet protocol at the Veterans Affairs Central California Health Care System in Fresno.
    DOI:  https://doi.org/10.12788/fp.0399
  7. Front Oncol. 2023 ;13 1254439
      Emerging evidence suggests that proline metabolism is important for regulating the survival and death of different types of cancer cells. Proline dehydrogenase (PRODH), an enzyme catalyzing proline catabolism, and the degradation products of proline by PRODH, such as ATP and ROS, are known to play critical roles in cancer progression. Notably, the role of PRODH in cancer is still complicated and unclear, and primarily depends on the cancer type and tumor microenvironment. For instance, PRODH induces apoptosis and senescence through ROS signaling in different types of cancers, while as a protumor factor, PRODH promotes malignant phenotypes of certain tumors under stresses such as hypoxia. In order to assess whether PRODH can serve as a novel target for cancer therapy, we will provide an overview of the biological functions of PRODH and its double-edged role in cancer in this article.
    Keywords:  ProDH; cancer metabolism; cancer therapy; immunosuppression; proline metabolism
    DOI:  https://doi.org/10.3389/fonc.2023.1254439
  8. Biochem Biophys Res Commun. 2023 Nov 18. pii: S0006-291X(23)01367-0. [Epub ahead of print]691 149273
      Recently, the fatty acid elongation enzyme ELOVL5 was identified as a critical pro-metastatic factor in prostate cancer, required for cell growth and mitochondrial homeostasis. The fatty acid elongation reaction catalyzed by ELOVL5 utilizes malonyl-CoA as the carbon donor. Here, we demonstrate that ELOVL5 knockdown causes malonyl-CoA accumulation. Malonyl-CoA is a cellular substrate that can inhibit fatty acid β-oxidation in the mitochondria through allosteric inhibition of carnitine palmitoyltransferase 1A (CPT1A), the enzyme that controls the rate-limiting step of the long chain fatty acid β-oxidation cycle. We hypothesized that changes in malonyl-CoA abundance following ELOVL5 knockdown could influence mitochondrial β-oxidation rates in prostate cancer cells, and regulate cell viability. Accordingly, we find that ELOVL5 knockdown is associated with decreased mitochondrial β-oxidation in prostate cancer cells. Combining ELOVL5 knockdown with FASN inhibition to increase malonyl-CoA abundance endogenously enhances the effect of ELOVL5 knockdown on prostate cancer cell viability, while preventing malonyl-CoA production rescues the cells from the effect of ELOVL5 knockdown. Our findings indicate an additional role for fatty acid elongation, in the control of malonyl-CoA homeostasis, alongside its established role in the production of long-chain fatty acid species, to explain the importance of fatty acid elongation for cell viability.
    Keywords:  Fatty acid elongation; Fatty acid oxidation; Malonyl-CoA; Prostate cancer
    DOI:  https://doi.org/10.1016/j.bbrc.2023.149273
  9. Front Cell Neurosci. 2023 ;17 1288918
      Glioma-related epilepsy (GRE) is a hallmark clinical presentation of gliomas with significant impacts on patient quality of life. The current standard of care for seizure management is comprised of anti-seizure medications (ASMs) and surgical resection. Seizures in glioma patients are often drug-resistant and can often recur after surgery despite total tumor resection. Therefore, current research is focused on the pro-epileptic pathological changes occurring in tumor cells and the peritumoral environment. One important contribution to seizures in GRE patients is metabolic reprogramming in tumor and surrounding cells. This is most evident by the significantly heightened seizure rate in patients with isocitrate dehydrogenase mutated (IDHmut) tumors compared to patients with IDH wildtype (IDHwt) gliomas. To gain further insight into glioma metabolism in epileptogenesis, this review compares the metabolic changes inherent to IDHmut vs. IDHwt tumors and describes the pro-epileptic effects these changes have on both the tumor cells and the peritumoral environment. Understanding alterations in glioma metabolism can help to uncover novel therapeutic interventions for seizure management in GRE patients.
    Keywords:  brain; glioma; peritumoral excitability; seizure development; tumor-related epilepsy; tumoral metabolism
    DOI:  https://doi.org/10.3389/fncel.2023.1288918
  10. Cancer Cell Int. 2023 Nov 30. 23(1): 302
       BACKGROUND: Acute myeloid leukemia (AML) with FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutation accounts for a large proportion of AML patients and diagnosed with poor prognosis. Although the prognosis of FLT3-ITD AML has been greatly improved, the drug resistance frequently occurred in the treatment of FLT3 targeting drugs. GNF-7, a multitargeted kinase inhibitor, which provided a novel therapeutic strategy for overriding leukemia. In this study, we explored the antitumor activity of GNF-7 against FLT3-ITD and clinically-relevant drug resistance in FLT3 mutant AML.
    METHODS: Growth inhibitory assays were performed in AML cell lines and Ba/F3 cells expressing various FLT3 mutants to evaluate the antitumor activity of GNF-7 in vitro. Western blotting was used to examine the inhibitory  effect of GNF-7 on FLT3 and its downstream pathways. Molecular docking and cellular thermal shift assay (CETSA) were performed to demonstrate the binding of FLT3 to GNF-7. The survival benefit of GNF-7 in vivo was assessed in mouse models of transformed Ba/F3 cells harboring FLT3-ITD and FLT3-ITD/F691L mutation. Primary patient samples and a patient-derived xenograft (PDX) model were also used to determine the efficacy of GNF-7.
    RESULTS: GNF-7 inhibited the cell proliferation of Ba/F3 cells expressing FLT3-ITD and exhibited potently anti-leukemia activity on primary FLT3-ITD AML samples. Moreover, GNF-7 could bind to FLT3 protein and inhibit the downstream signaling pathway activated by FLT3 including STAT5, PI3K/AKT and MAPK/ERK. In vitro and in vivo studies showed that GNF-7 exhibited potent inhibitory activity against FLT3-ITD/F691L that confers resistant to quizartinib (AC220) or gilteritinib. Importantly, GNF-7 showed potent cytotoxic effect on leukemic stem cells, significantly extend the survival of PDX model and exhibited similar therapy effect compared with gilteritinib.
    CONCLUSIONS: Our results show that GNF-7 is a potent FLT3-ITD inhibitor and may become a promising lead compound applied for treating some of the clinically drug resistant patients.
    Keywords:  Acute myeloid leukemia; Drug resistance; FLT3-ITD; GNF-7
    DOI:  https://doi.org/10.1186/s12935-023-03142-y
  11. Cancer Discov. 2023 Dec 01. OF1
      Relapsed tumors in pediatric AML are enriched in primitive cells and lose myeloid transcriptional programs.
    DOI:  https://doi.org/10.1158/2159-8290.CD-RW2023-187
  12. PeerJ. 2023 ;11 e16512
       Background: Niclosamide is an oral anthelminthic drug that has been used for treating tapeworm infections. Its mechanism involves the disturbance of mitochondrial membrane potential that in turn inhibits oxidative phosphorylation leading to ATP depletion. To date, niclosamide has been validated as the potent anti-cancer agent against several cancers. However, the molecular mechanisms underlying the effects of niclosamide on the liver fluke Opisthorchis viverrini (Ov)-associated cholangiocarcinoma (CCA) cell functions remain to be elucidated. The aims of this study were to investigate the effects of niclosamide on CCA cell proliferation and on metabolic phenoconversion through the alteration of metabolites associated with mitochondrial function in CCA cell lines.
    Materials and Methods: The inhibitory effect of niclosamide on CCA cells was determined using SRB assay. A mitochondrial membrane potential using tetramethylrhodamine, ethyl ester-mitochondrial membrane potential (TMRE-MMP) assay was conducted. Liquid chromatography-mass spectrometry-based metabolomics was employed to investigate the global metabolic changes upon niclosamide treatment. ATP levels were measured using CellTiter-Glo® luminescent cell viability assay. NAD metabolism was examined by the NAD+/NADH ratio.
    Results: Niclosamide strongly inhibited CCA cell growth and reduced the MMP of CCA cells. An orthogonal partial-least square regression analysis revealed that the effects of niclosamide on suppressing cell viability and MMP of CCA cells were significantly associated with an increase in niacinamide, a precursor in NAD synthesis that may disrupt the electron transport system leading to suppression of NAD+/NADH ratio and ATP depletion.
    Conclusion: Our findings unravel the mode of action of niclosamide in the energy depletion that could potentially serve as the promising therapeutic strategy for CCA treatment.
    Keywords:  Cholangiocarcinoma; LC-MS; Metabolomics; Niclosamide
    DOI:  https://doi.org/10.7717/peerj.16512
  13. Mol Ther Oncolytics. 2023 Dec 19. 31 100740
      Lactic acid is one of the most abundant products of cellular metabolism and has historically been considered a cell-damaging metabolic product. However, as research has deepened, the beneficial effects of lactic acid on tumor cells and the tumor microenvironment have received increasing attention from the oncology community. Lactic acid can not only provide tumor cells with energy but also act as a messenger molecule that promotes tumor growth and progression and protects tumor cells from immune cells and killing by radiation and chemotherapy. Thus, the inhibition of tumor cell lactic acid metabolism has emerged as a novel antitumor treatment strategy that can also effectively enhance the efficacy of conventional antitumor therapies. In this review, we classify the currently available therapies targeting lactic acid metabolism and examine their prospects for clinical application.
    Keywords:  acidic tumor microenvironment; cancer; drug delivery; lactic acid metabolism; targeted therapy
    DOI:  https://doi.org/10.1016/j.omto.2023.100740
  14. Cell Biochem Funct. 2023 Nov 28.
      Acute myeloid leukemia (AML) is a highly lethal hematological malignancy in adults and children. Abnormal proliferation of leukemia stem cells (LSC) with CD34+ and CD38- phenotypes are the main clinical features of AML. Patients with AML face drug resistance and treatment failure due to a default in stem and progenitor cells. Therefore, defining LSC properties is necessary for targeting leukemia-initiating cells. Mitochondrial mass and activity increase in AML initiating cells compared with normal stem cells. This idea has offered the inhibition of the mitochondrial translation machinery to reduce the number of leukemia-initiating cells in patients with AML Tigecycline is an FDA-approved microbial antibiotic that inhibits oxidative phosphorylation in mitochondria, resulting in the suppression of leukemia cell proliferation with little toxicity to normal cells. Thus, the present study was conducted to evaluate whether LSC is influenced by mitochondrial inhibition. We measured the IC50 of tigecycline in KG-1a AML cell lines. KG-1a AML cell lines were separated into CD34+ and CD34- cells by MACS. In the following, these cells were treated with 20 µM (IC50) tigecycline. The expression of Annexin/PI, Caspase 3, apoptotic genes (BCL2, BCLX, BAX, BAD, and P53) and proteins (P53, BAX, BCL2 and Caspase 9) was evaluated in CD34+ , CD34- and KG-1a AML cells. In addition, the telomere length and expression of hTERT were evaluated in this study. The results indicated that BCl2 (gene and protein) and BCLX gene dramatically decreased. In addition, BAD, BAX, and P53 gene and protein expression significantly increased in CD34+ AML cells compared to CD34- AML cells. The results also suggested that tigecycline induced intrinsic (Cleaved-caspase 9/Pro-Caspase 9 ratio) and p53-mediated apoptosis. Furthermore, hTERT gene expression and telomere length decreased in the tigecycline-treated groups. Taken together, our findings indicate that inhibition of mitochondrial activity with tigecycline can induce apoptosis in cancer stem cells and can be used as a novel method for cancer therapy.
    Keywords:  acute myeloid leukemia; apoptosis; leukemia stem cells; mitochondria; tigecycline
    DOI:  https://doi.org/10.1002/cbf.3888
  15. Cell Death Discov. 2023 Dec 01. 9(1): 435
      The principle of drug sensitivity testing is to expose cancer cells to a library of different drugs and measure its effects on cell viability. Recent technological advances, continuous approval of targeted therapies, and improved cell culture protocols have enhanced the precision and clinical relevance of such screens. Indeed, drug sensitivity testing has proven diagnostically valuable for patients with advanced hematologic cancers. However, different cell types behave differently in culture and therefore require optimized drug screening protocols to ensure that their ex vivo drug sensitivity accurately reflects in vivo drug responses. For example, primary chronic lymphocytic leukemia (CLL) and multiple myeloma (MM) cells require unique microenvironmental stimuli to survive in culture, while this is less the case for acute myeloid leukemia (AML) cells. Here, we present our optimized and validated protocols for culturing and drug screening of primary cells from AML, CLL, and MM patients, and a generic protocol for cell line models. We also discuss drug library designs, reproducibility, and quality controls. We envision that these protocols may serve as community guidelines for the use and interpretation of assays to monitor drug sensitivity in hematologic cancers and thus contribute to standardization. The read-outs may provide insight into tumor biology, identify or confirm treatment resistance and sensitivity in real time, and ultimately guide clinical decision-making.
    DOI:  https://doi.org/10.1038/s41420-023-01722-5
  16. Neurooncol Adv. 2023 Jan-Dec;5(1):5(1): vdad143
       Background: Mutant isocitrate dehydrogenase (IDHmut) catalyzes 2-hydroxyglutarate (2HG) production and is considered a therapeutic target for IDHmut tumors. However, response is mostly associated with inhibition of tumor growth. Response assessment via anatomic imaging is therefore challenging. Our goal was to directly detect IDHmut inhibition using a new hyperpolarized (HP) 13C magnetic resonance spectroscopy-based approach to noninvasively assess α-ketoglutarate (αKG) metabolism to 2HG and glutamate.
    Methods: We studied IDHmut-expressing normal human astrocyte (NHAIDH1mut) cells and rats with BT257 tumors, and assessed response to the IDHmut inhibitor BAY-1436032 (n ≥ 4). We developed a new 13C Echo Planar Spectroscopic Imaging sequence with an optimized RF pulse to monitor the fate of HP [1-13C]αKG and [5-12C,1-13C]αKG with a 2.5 × 2.5 × 8 mm3 spatial resolution.
    Results: Cell studies confirmed that BAY-1436032-treatment leads to a drop in HP 2HG and an increase in HP glutamate detectable with both HP substrates. Data using HP [5-12C,1-13C]αKG also demonstrated that its conversion to 2HG is detectable without the proximal 1.1% natural abundance [5-13C]αKG signal. In vivo studies showed that glutamate is produced in normal brains but no 2HG is detectable. In tumor-bearing rats, we detected the production of both 2HG and glutamate, and BAY-1436032-treatment led to a drop in 2HG and an increase in glutamate. Using HP [5-12C,1-13C]αKG we detected metabolism with an signal-to-noise ratio of 23 for 2HG and 17 for glutamate.
    Conclusions: Our findings point to the clinical potential of HP αKG, which recently received FDA investigational new drug approval for research, for noninvasive localized imaging of IDHmut status.
    Keywords:  IDH inhibitor; hyperpolarized 13C MRS; imaging biomarker; mutant IDH glioma; therapeutic response
    DOI:  https://doi.org/10.1093/noajnl/vdad143
  17. Curr Top Membr. 2023 ;pii: S1063-5823(23)00026-1. [Epub ahead of print]92 71-98
      Sodium (Na+) concentration in solid tumours of different origin is highly dysregulated, and this corresponds to the aberrant expression of Na+ transporters. In particular, the α subunits of voltage gated Na+ channels (VGSCs) raise intracellular Na+ concentration ([Na+]i) in malignant cells, which influences the progression of solid tumours, predominantly driving cancer cells towards a more aggressive and metastatic phenotype. Conversely, re-expression of VGSC β subunits in cancer cells can either enhance tumour progression or promote anti-tumourigenic properties. Metastasis is the leading cause of cancer-related mortality, highlighting an important area of research which urgently requires improved therapeutic interventions. Here, we review the extent to which VGSC subunits are dysregulated in solid tumours, and consider the implications of such dysregulation on solid tumour progression. We discuss current understanding of VGSC-dependent mechanisms underlying increased invasive and metastatic potential of solid tumours, and how the complex relationship between the tumour microenvironment (TME) and VGSC expression may further drive tumour progression, in part due to the interplay of infiltrating immune cells, cancer-associated fibroblasts (CAFs) and insufficient supply of oxygen (hypoxia). Finally, we explore past and present clinical trials that investigate utilising existing VGSC modulators as potential pharmacological options to support adjuvant chemotherapies to prevent cancer recurrence. Such research demonstrates an exciting opportunity to repurpose therapeutics in order to improve the disease-free survival of patients with aggressive solid tumours.
    Keywords:  Cancer-associated fibroblasts; Channelopathy; Hypoxia; Lidocaine; Metastasis; Tumours; Voltage-gated sodium channel
    DOI:  https://doi.org/10.1016/bs.ctm.2023.09.005
  18. bioRxiv. 2023 Nov 15. pii: 2023.11.13.566775. [Epub ahead of print]
      The efficacy of chimeric antigen receptor (CAR)-T therapy has been limited against brain tumors to date. CAR-T cells infiltrating syngeneic intracerebral SB28-EGFRvIII glioma revealed impaired mitochondrial ATP production and a markedly hypoxic status compared to ones migrating to subcutaneous tumors. Drug screenings to improve metabolic states of T cells under hypoxic conditions led us to evaluate the combination of AMPK activator Metformin and the mTOR inhibitor Rapamycin (Met+Rap). Met+Rap-pretreated mouse CAR-T cells showed activated PPAR-gamma coactivator 1α (PGC-1α) through mTOR inhibition and AMPK activation, and a higher level of mitochondrial spare respiratory capacity than those pretreated with individual drugs or without pretreatment. Moreover, Met+Rap-pretreated CAR-T cells demonstrated persistent and effective anti-glioma cytotoxic activities in the hypoxic condition. Furthermore, a single intravenous infusion of Met+Rap-pretreated CAR-T cells significantly extended the survival of mice bearing intracerebral SB28-EGFRvIII gliomas. Mass cytometric analyses highlighted increased glioma-infiltrating CAR-T cells in the Met+Rap group with fewer Ly6c+ CD11b+ monocytic myeloid-derived suppressor cells in the tumors. Finally, human CAR-T cells pretreated with Met+Rap recapitulated the observations with murine CAR-T cells, demonstrating improved functions in vitro hypoxic conditions. These findings advocate for translational and clinical exploration of Met+Rap-pretreated CAR-T cells in human trials.
    DOI:  https://doi.org/10.1101/2023.11.13.566775
  19. Front Cell Dev Biol. 2023 ;11 1272667
      Introduction: Detachment from the extracellular matrix (ECM) is the first step of the metastatic cascade. It is a regulated process involving interaction between tumor cells and tumor microenvironment (TME). Iron is a key micronutrient within the TME. Here, we explored the role of iron in the ability of ovarian cancer cells to successfully detach from the ECM. Methods: HEY and PEO1 ovarian cancer cells were grown in 3D conditions. To mimic an iron rich TME, culture media were supplemented with 100 μM Fe3+. Cell mortality was evaluated by cytofluorimetric assay. The invasive potential of tumor spheroids was performed in Matrigel and documented with images and time-lapses. Iron metabolism was assessed by analyzing the expression of CD71 and FtH1, and by quantifying the intracellular labile iron pool (LIP) through Calcein-AM cytofluorimetric assay. Ferroptosis was assessed by quantifying mitochondrial reactive oxygen species (ROS) and lipid peroxidation through MitoSOX and BODIPY-C11 cytofluorimetric assays, respectively. Ferroptosis markers GPX4 and VDAC2 were measured by Western blot. FtH1 knockdown was performed by using siRNA. Results: To generate spheroids, HEY and PEO1 cells prevent LIP accumulation by upregulating FtH1. 3D HEY moderately increases FtH1, and LIP is only slightly reduced. 3D PEO1upregulate FtH1 and LIP results significantly diminished. HEY tumor spheroids prevent iron import downregulating CD71, while PEO1 cells strongly enhance it. Intracellular ROS drop down during the 2D to 3D transition in both cell lines, but more significantly in PEO1 cells. Upon iron supplementation, PEO1 cells continue to enhance CD71 and FtH1 without accumulating the LIP and ROS and do not undergo ferroptosis. HEY, instead, accumulate LIP, undergo ferroptosis and attenuate their sphere-forming ability and invasiveness. FtH1 knockdown significantly reduces the generation of PEO1 tumor spheroids, although without sensitizing them to ferroptosis. Discussion: Iron metabolism reprogramming is a key event in the tumor spheroid generation of ovarian cancer cells. An iron-rich environment impairs the sphere-forming ability and causes cell death only in ferroptosis sensitive cells. A better understanding of ferroptosis sensitivity could be useful to develop effective treatments to kill ECM-detached ovarian cancer cells.
    Keywords:  ECM detachment; FtH1; TME; ferroptosis; iron metabolism; ovarian cancer; tumor spheroids
    DOI:  https://doi.org/10.3389/fcell.2023.1272667
  20. Biochem Pharmacol. 2023 Nov 28. pii: S0006-2952(23)00546-4. [Epub ahead of print] 115953
      The pharmacological interest in mitochondria is very relevant since these crucial organelles are involved in the pathogenesis of multiple diseases, such as cancer. In order to modulate cellular redox/oxidative balance and enhance mitochondrial function, numerous polyphenolic derivatives targeting mitochondria have been developed. Still, due to the drug resistance emergence in several cancer therapies, significant efforts are being made to develop drugs that combine the induction of mitochondrial metabolic reprogramming with the ability to generate reactive oxygen species, taking into consideration the varying metabolic profiles of different cell types. We previously developed a mitochondria-targeted antioxidant (AntiOxCIN6) by linking caffeic acid to lipophilic triphenylphosphonium cation through a 10-carbon aliphatic chain. The antioxidant activity of AntiOxCIN6 has been documented but how the mitochondriotropic compound impact energy metabolism of both normal and cancer cells remains unknown. We demonstrated that AntiOxCIN6 increased antioxidant defense system in HepG2 cells, although ROS clearance was ineffective. Consequently, AntiOxCIN6 significantly decreased mitochondrial function and morphology, culminating in a decreased capacity in complex I-driven ATP production without affecting cell viability. These alterations were accompanied by an increase in glycolytic fluxes. Additionally, we demonstrate that AntiOxCIN6 sensitized A549 adenocarcinoma cells for CIS-induced apoptotic cell death, while AntiOxCIN6 appears to cause metabolic changes or a redox pre-conditioning on lung MRC-5 fibroblasts, conferring protection against cisplatin. We propose that length and hydrophobicity of the C10-TPP + alkyl linker play a significant role in inducing mitochondrial and cellular toxicity, while the presence of the antioxidant caffeic acid appears to be responsible for activating cytoprotective pathways.
    Keywords:  Antioxidant defenses; Glycolysis; Lung cancer therapy; Metabolic remodeling; Mitochondrial (dys)homeostasis; Mitochondriotropic phenolic antioxidants; Reactive oxygen species
    DOI:  https://doi.org/10.1016/j.bcp.2023.115953
  21. MedComm (2020). 2023 Dec;4(6): e421
      The interplay between genetic alterations and metabolic dysregulation is increasingly recognized as a pivotal axis in cancer pathogenesis. Both elements are mutually reinforcing, thereby expediting the ontogeny and progression of malignant neoplasms. Intriguingly, recent findings have highlighted the translocation of metabolites and metabolic enzymes from the cytoplasm into the nuclear compartment, where they appear to be intimately associated with tumor cell proliferation. Despite these advancements, significant gaps persist in our understanding of their specific roles within the nuclear milieu, their modulatory effects on gene transcription and cellular proliferation, and the intricacies of their coordination with the genomic landscape. In this comprehensive review, we endeavor to elucidate the regulatory landscape of metabolic signaling within the nuclear domain, namely nuclear metabolic signaling involving metabolites and metabolic enzymes. We explore the roles and molecular mechanisms through which metabolic flux and enzymatic activity impact critical nuclear processes, including epigenetic modulation, DNA damage repair, and gene expression regulation. In conclusion, we underscore the paramount significance of nuclear metabolic signaling in cancer biology and enumerate potential therapeutic targets, associated pharmacological interventions, and implications for clinical applications. Importantly, these emergent findings not only augment our conceptual understanding of tumoral metabolism but also herald the potential for innovative therapeutic paradigms targeting the metabolism-genome transcriptional axis.
    Keywords:  DNA methylation; cancer therapy; histone modifications; nuclear metabolic enzymes; nuclear metabolic signaling; tumor metabolism
    DOI:  https://doi.org/10.1002/mco2.421
  22. bioRxiv. 2023 Nov 19. pii: 2023.11.19.567663. [Epub ahead of print]
      In triple-negative breast cancer (TNBC) that relies on catabolism of amino acid glutamine, glutaminase (GLS) converts glutamine to glutamate, which facilitates glutathione synthesis by mediating the enrichment of intracellular cystine via xCT antiporter activity. To overcome chemo resistant TNBC, we have tested a strategy of disrupting cellular redox balance by inhibition of GLS and xCT by CB839 and Erastin, respectively. Key findings of our study include: 1. Dual metabolic inhibition (CB839+Erastin) led to significant increases of cellular superoxide level in both parent and chemo resistant TNBC cells, but superoxide level was distinctly lower in resistant cells. 2. Dual metabolic inhibition combined with doxorubicin or cisplatin induced significant apoptosis in TNBC cells and is associated with high degrees of GSH depletion. In vivo , dual metabolic inhibition plus cisplatin led to significant growth delay of chemo resistant human TNBC xenografts. 3. Ferroptosis is induced by doxorubicin (DOX) but not by cisplatin or paclitaxel. Addition of dual metabolic inhibition to DOX chemotherapy significantly enhanced ferroptotic cell death. 4. Significant changes in cellular metabolites concentration preceded transcriptome changes revealed by single cell RNA sequencing, underscoring the potential of capturing early changes in metabolites as pharmacodynamic markers of metabolic inhibitors. Here we demonstrated that 4-(3-[ 18 F]fluoropropyl)-L-glutamic acid ([ 18 F]FSPG) PET detected xCT blockade by Erastin or its analog in mice bearing human TNBC xenografts. In summary, our study provides compelling evidence for the therapeutic benefit and feasibility of non-invasive monitoring of dual metabolic blockade as a translational strategy to sensitize chemo resistant TNBC to cytotoxic chemotherapy.
    DOI:  https://doi.org/10.1101/2023.11.19.567663
  23. bioRxiv. 2023 Nov 17. pii: 2023.11.15.567243. [Epub ahead of print]
      Patient-derived organoid (PDO) models of cancer are a multifunctional research system that better recapitulates human disease as compared to cancer cell lines. PDO models can be generated by culturing patient tumor cells in extracellular basement membrane extracts (BME) and plating as three-dimensional domes. However, commercially available reagents that have been optimized for phenotypic assays in monolayer cultures often are not compatible with BME. Herein we describe a method to plate PDO models and assess drug effects using an automated live-cell imaging system. In addition, we apply fluorescent dyes that are compatible with kinetic measurements to simultaneously quantitate cell health and apoptosis. Image capture can be customized to occur at regular time intervals over several days. Users can analyze drug effects in individual Z-plane images or a Z Projection of serial images from multiple focal planes. Using masking, specific parameters of interest are calculated, such as PDO number, area, and fluorescence intensity. We provide proof-of-concept data demonstrating the effect of cytotoxic agents on cell health, apoptosis and viability. This automated kinetic imaging platform can be expanded to other phenotypic readouts to understand diverse therapeutic effects in PDO models of cancer.
    SUMMARY: Patient-derived tumor organoids are a sophisticated model system for basic and translational research. This methods article details the use of multiplexed fluorescent live-cell imaging for simultaneous kinetic assessment of different organoid phenotypes.
    DOI:  https://doi.org/10.1101/2023.11.15.567243
  24. STAR Protoc. 2023 Nov 29. pii: S2666-1667(23)00712-8. [Epub ahead of print]4(4): 102745
      Mitochondrial morphology is an indicator of cellular health and function; however, its quantification and categorization into different subclasses is a complicated process. Here, we present a protocol for mitochondrial morphology quantification in the presence and absence of carbonyl cyanide m-chlorophenyl hydrazone stress. We describe steps for the preparation of cells for immunofluorescence microscopy, staining, and morphology quantification. The quantification protocol generates an aspect ratio that helps to categorize mitochondria into two clear subclasses. For complete details on the use and execution of this protocol, please refer to Nag et al.1.
    Keywords:  Cell Biology; Cell culture; Metabolism; Microscopy; Molecular/Chemical Probes
    DOI:  https://doi.org/10.1016/j.xpro.2023.102745
  25. BMC Cancer. 2023 Dec 01. 23(1): 1183
       BACKGROUND: Obesity is a risk factor for breast cancer, and women with obesity that develop breast cancer have a worsened prognosis. Within the mammary gland, obesity causes chronic, macrophage-driven inflammation and adipose tissue fibrosis. Weight loss is a recommended intervention to resolve obesity, but the impact of weight loss on the mammary gland microenvironment and in tumors has not been well identified.
    METHODS: To examine the effects of weight loss following obesity, mice were fed a high-fat diet for 16 weeks to induce obesity, then switched to a low-fat diet for 6 weeks. We examined changes in immune cells, including fibrocytes, which are myeloid lineage cells that have attributes of both macrophages and myofibroblasts, and collagen deposition within the mammary glands of non-tumor-bearing mice and within the tumors of mice that were transplanted with estrogen receptor alpha positive TC2 tumor cells.
    RESULTS: In formerly obese mice, we observed reduced numbers of crown-like structures and fibrocytes in mammary glands, while collagen deposition was not resolved with weight loss. Following transplant of TC2 tumor cells into the mammary glands of lean, obese, and formerly obese mice, diminished collagen deposition and cancer-associated fibroblasts were observed in tumors from formerly obese mice compared to obese mice. Within tumors of obese mice, increased myeloid-derived suppressor cells and diminished CD8+ T cells were identified, while the microenvironment of tumors of formerly obese mice were more similar to tumors from lean mice. When TC2 tumor cells were mixed with CD11b+CD34+ myeloid progenitor cells, which are the cells of origin for fibrocytes, and transplanted into mammary glands of lean and obese mice, collagen deposition within the tumors of both lean and obese was significantly greater than when tumor cells were mixed with CD11b+CD34- monocytes or total CD45+ immune cells.
    CONCLUSIONS: Overall, these studies demonstrate that weight loss resolved some of the microenvironmental conditions within the mammary gland that may contribute to tumor progression. Additionally, fibrocytes may contribute to early collagen deposition in mammary tumors of obese mice leading to the growth of desmoplastic tumors.
    Keywords:  Breast cancer; Collagen; Fibrocytes; Fibrosis; Macrophages; Mammary gland; Myeloid progenitor cells; Obesity; Weight loss
    DOI:  https://doi.org/10.1186/s12885-023-11688-3
  26. Leukemia. 2023 Nov 25.
      We identified activin A receptor type I (ACVR1), a member of the TGF-β superfamily, as a factor favoring acute myeloid leukemia (AML) growth and a new potential therapeutic target. ACVR1 is overexpressed in FLT3-mutated AML and inhibition of ACVR1 expression sensitized AML cells to FLT3 inhibitors. We developed a novel ACVR1 inhibitor, TP-0184, which selectively caused growth arrest in FLT3-mutated AML cell lines. Molecular docking and in vitro kinase assays revealed that TP-0184 binds to both ACVR1 and FLT3 with high affinity and inhibits FLT3/ACVR1 downstream signaling. Treatment with TP-0184 or in combination with BCL2 inhibitor, venetoclax dramatically inhibited leukemia growth in FLT3-mutated AML cell lines and patient-derived xenograft models in a dose-dependent manner. These findings suggest that ACVR1 is a novel biomarker and plays a role in AML resistance to FLT3 inhibitors and that FLT3/ACVR1 dual inhibitor TP-0184 is a novel potential therapeutic tool for AML with FLT3 mutations.
    DOI:  https://doi.org/10.1038/s41375-023-02086-6