bims-medica Biomed News
on Metabolism and diet in cancer
Issue of 2024‒06‒16
thirty papers selected by
Brett Chrest, East Carolina University



  1. bioRxiv. 2024 Jun 02. pii: 2024.05.28.596339. [Epub ahead of print]
      Mitochondrial function is important for both energetic and anabolic metabolism. Pathogenic mitochondrial DNA (mtDNA) mutations directly impact these functions, resulting in the detrimental consequences seen in human mitochondrial diseases. The role of pathogenic mtDNA mutations in human cancers is less clear; while pathogenic mtDNA mutations are observed in some cancer types, they are almost absent in others. We report here that the proofreading mutant DNA polymerase gamma ( PolG D256A ) induced a high mtDNA mutation burden in non-small-cell lung cancer (NSCLC), and promoted the accumulation of defective mitochondria, which is responsible for decreased tumor cell proliferation and viability and increased cancer survival. In NSCLC cells, pathogenic mtDNA mutations increased glycolysis and caused dependence on glucose. The glucose dependency sustained mitochondrial energetics but at the cost of a decreased NAD+/NADH ratio that inhibited de novo serine synthesis. Insufficient serine synthesis, in turn, impaired the downstream synthesis of GSH and nucleotides, leading to impaired tumor growth that increased cancer survival. Unlike tumors with intact mitochondrial function, NSCLC with pathogenic mtDNA mutations were sensitive to dietary serine and glycine deprivation. Thus, mitochondrial function in NSCLC is required specifically to sustain sufficient serine synthesis for nucleotide production and redox homeostasis to support tumor growth, explaining why these cancers preserve functional mtDNA.In brief: High mtDNA mutation burden in non-small-cell lung cancer (NSCLC) leads to the accumulation of respiration-defective mitochondria and dependency on glucose and glycolytic metabolism. Defective respiratory metabolism causes a massive accumulation of cytosolic nicotinamide adenine dinucleotide + hydrogen (NADH), which impedes serine synthesis and, thereby, glutathione (GSH) and nucleotide synthesis, leading to impaired tumor growth and increased survival.
    Highlights: Proofreading mutations in Polymerase gamma led to a high burden of mitochondrial DNA mutations, promoting the accumulation of mitochondria with respiratory defects in NSCLC.Defective respiration led to reduced proliferation and viability of NSCLC cells increasing survival to cancer.Defective respiration caused glucose dependency to fuel elevated glycolysis.Altered glucose metabolism is associated with high NADH that limits serine synthesis, leading to impaired GSH and nucleotide production.Mitochondrial respiration defects sensitize NSCLC to dietary serine/glycine starvation, further increasing survival.
    Abstract Figure:
    DOI:  https://doi.org/10.1101/2024.05.28.596339
  2. Mol Metab. 2024 Jun 12. pii: S2212-8778(24)00097-8. [Epub ahead of print] 101966
      Bioenergetic remodeling of core energy metabolism is essential to the initiation, survival, and progression of cancer cells through exergonic supply of adenosine triphosphate (ATP) and metabolic intermediates, as well as control of redox homeostasis. Mitochondria are evolutionarily conserved organelles that mediate cell survival by conferring energetic plasticity and adaptive potential. Mitochondrial ATP synthesis is coupled to the oxidation of a variety of substrates generated through diverse metabolic pathways. As such, inhibition of the mitochondrial bioenergetic system by restricting metabolite availability, direct inhibition of the respiratory Complexes, altering organelle structure, or coupling efficiency may restrict carcinogenic potential and cancer progression. Here, we review the role of bioenergetics as the principal conductor of energetic functions and carcinogenesis while highlighting the therapeutic potential of targeting mitochondrial functions.
    Keywords:  Bioenergetics; Cancer; Cell Survival; Energy Transformation; Mitochondria
    DOI:  https://doi.org/10.1016/j.molmet.2024.101966
  3. Essays Biochem. 2024 Jun 12. pii: EBC20230088. [Epub ahead of print]
      Malate dehydrogenase (MDH) is an essential enzyme in the tricarboxylic acid cycle that functions in cellular respiration and redox homeostasis. Recent studies indicate that MDH facilitates metabolic plasticity in tumor cells, catalyzing the formation of an oncometabolite, contributing to altered epigenetics, and maintaining redox capacity to support the rewired energy metabolism and biosynthesis that enables cancer progression. This minireview summarizes current findings on the unique supporting roles played by MDH in human cancers and provides an update on targeting MDH in cancer chemotherapy.
    Keywords:  cancer; malate dehydrogenase; metabolomics; oncometabolism; redox balance
    DOI:  https://doi.org/10.1042/EBC20230088
  4. Cell Metab. 2024 Jun 07. pii: S1550-4131(24)00190-6. [Epub ahead of print]
      Mitochondria house many metabolic pathways required for homeostasis and growth. To explore how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts from patients with various mitochondrial disorders and cancer cells with electron transport chain (ETC) blockade. These analyses revealed extensive perturbations in purine metabolism, and stable isotope tracing demonstrated that ETC defects suppress de novo purine synthesis while enhancing purine salvage. In human lung cancer, tumors with markers of low oxidative mitochondrial metabolism exhibit enhanced expression of the salvage enzyme hypoxanthine phosphoribosyl transferase 1 (HPRT1) and high levels of the HPRT1 product inosine monophosphate. Mechanistically, ETC blockade activates the pentose phosphate pathway, providing phosphoribosyl diphosphate to drive purine salvage supplied by uptake of extracellular bases. Blocking HPRT1 sensitizes cancer cells to ETC inhibition. These findings demonstrate how cells remodel purine metabolism upon ETC blockade and uncover a new metabolic vulnerability in tumors with low respiration.
    Keywords:  HPRT1; NAD(+):NADH ratio; electron transport chain; metabolomics; purine metabolism; stable isotopes
    DOI:  https://doi.org/10.1016/j.cmet.2024.05.014
  5. Cold Spring Harb Perspect Med. 2024 Jun 10. pii: a041544. [Epub ahead of print]
      Metabolic reprogramming in cancer allows cells to survive in harsh environments and sustain macromolecular biosynthesis to support proliferation. In addition, metabolites play crucial roles as signaling molecules. Metabolite fluctuations are detected by various sensors in the cell to regulate gene expression, metabolism, and signal transduction. Metabolic signaling mechanisms contribute to tumorigenesis by altering the physiology of cancer cells themselves, as well as that of neighboring cells in the tumor microenvironment. In this review, we discuss principles of metabolic signaling and provide examples of how cancer cells take advantage of metabolic signals to promote cell proliferation and evade the immune system, thereby contributing to tumor growth and progression.
    DOI:  https://doi.org/10.1101/cshperspect.a041544
  6. J Nutr Biochem. 2024 Jun 12. pii: S0955-2863(24)00123-2. [Epub ahead of print] 109690
      BACKGROUND: Increased adiposity is a significant risk factor for pancreatic cancer development. Multiple preclinical studies have documented that high-fat, high caloric diets, rich in omega-6 fatty acids (FA) accelerate pancreatic cancer development. However, the effect of a high-fat, low sucrose diet (HFD), on pancreatic carcinogenesis remains unclear. We evaluated the impact of a HFD on early-stage pancreatic carcinogenesis in the clinically relevant KrasLSL-G12D/+; Ptf1aCre/+ (KC) genetically engineered mouse model, and characterized the role of the mesenteric adipose tissue (MAT).METHODS: Cohorts of male and female KC mice were randomly assigned to a control diet (CD) or a HFD, matched for FA composition (9:1 of omega-6 FA: omega-3 FA), and fed their diets for eight weeks.
    RESULTS: After eight weeks on a HFD, KC mice had significantly higher body weight, fat mass, and serum leptin compared to CD-fed KC mice. Furthermore, a HFD accelerated pancreatic acinar-to-ductal metaplasia (ADM) and proliferation, associated with increased activation of ERK and STAT3, and macrophage infiltration in the pancreas, compared to CD-fed KC mice. Metabolomics analysis of the MAT revealed sex differences between diet groups. In females, a HFD altered metabolites related to FA (α-linolenic acid and linoleic acid) and amino acid metabolism (alanine, aspartate, glutamate). In males, a HFD significantly affected pathways related to alanine, aspartate, glutamate, linoleic acid, and the citric acid cycle.
    CONCLUSIONS: A HFD accelerates early pancreatic ADM through multifaceted mechanisms, including effects at the tumor and surrounding MAT. The sex-dependent changes in MAT metabolites could explain some of the sex differences in HFD-induced pancreatic ADM.
    Keywords:  Diet; fat; lipids; obesity; pancreatic cancer; pancreatic cancer risk
    DOI:  https://doi.org/10.1016/j.jnutbio.2024.109690
  7. Cold Spring Harb Perspect Med. 2024 Jun 10. pii: a041554. [Epub ahead of print]
      Tumor cells divide rapidly and dramatically alter their metabolism to meet biosynthetic and bioenergetic needs. Through studying the aberrant metabolism of cancer cells, other contexts in which metabolism drives cell state transitions become apparent. In this work, we will discuss how principles established by the field of cancer metabolism have led to discoveries in the contexts of physiology and tissue injury, mammalian embryonic development, and virus infection. We present specific examples of findings from each of these fields that have been shaped by the study of cancer metabolism. We also discuss the next important scientific questions facing these subject areas collectively. Altogether, these examples demonstrate that the study of "cancer metabolism" is indeed the study of cell metabolism in the context of a tumor, and undoubtedly discoveries from each of the fields discussed here will continue to build on each other in the future.
    DOI:  https://doi.org/10.1101/cshperspect.a041554
  8. Leuk Lymphoma. 2024 Jun 13. 1-16
      Despite the development of several Fms-like tyrosine kinase 3 (FLT3) inhibitors that have improved outcomes in patients with FLT3-mutant acute myeloid leukemia (AML), drug resistance is frequently observed, which may be associated with the activation of additional pro-survival pathways, such as those regulated by BTK, aurora kinases (AuroK), and potentially others, in addition to acquired tyrosine kinase domain (TKD) mutations of FLT3 gene. FLT3 may not always be a driver mutation. We evaluated the anti-leukemia efficacy of the novel multi-kinase inhibitor CG-806, which targets FLT3 and other kinases, to circumvent drug resistance and target FLT3 wild-type (WT) cells. The anti-leukemia activity of CG-806 was investigated by measuring apoptosis induction and analyzing the cell cycle using flow cytometry in vitro. CG-806 demonstrated superior anti-leukemia efficacy compared to commercially available FLT3 inhibitors, both in vitro and in vivo, regardless of FLT3 mutational status. The mechanism of action of CG-806 may involve its broad inhibitory profile against FLT3, BTK, and AuroK. In FLT3 mutant cells, CG-806 induced G1 phase blockage, whereas in FLT3 WT cells, it resulted in G2/M phase arrest. Targeting FLT3 and Bcl-2 and/or Mcl-1 simultaneously results in a synergistic pro-apoptotic effect in FLT3 mutant leukemia cells. The results of this study suggest that CG-806 is a promising multi-kinase inhibitor with anti-leukemic efficacy regardless of FLT3 mutational status. A phase 1 clinical trial of CG-806 for the treatment of AML has been initiated (NCT04477291).Key pointsThe multi-kinase inhibitor CG-806 exerts superior anti-leukemic activity in AML, regardless of its FLT3 status.CG-806 triggered G1 arrest in FLT3 mutated cells and G2/M arrest in FLT3 WT cells through the suppression of FLT3/BTK and aurora kinases.Concomitantly targeting FLT3 and Bcl-2 and/or Mcl-1 exerted synergistic pro-apoptotic effects on both FLT3 WT and mutated AML cells.
    Keywords:  CG-806; FLT3; Multi-kinase inhibitor; acute myeloid leukemia
    DOI:  https://doi.org/10.1080/10428194.2024.2364839
  9. Adv Sci (Weinh). 2024 Jun 14. e2402557
      In oxygen (O2)-controlled cell culture, an indispensable tool in biological research, it is presumed that the incubator setpoint equals the O2 tension experienced by cells (i.e., pericellular O2). However, it is discovered that physioxic (5% O2) and hypoxic (1% O2) setpoints regularly induce anoxic (0% O2) pericellular tensions in both adherent and suspension cell cultures. Electron transport chain inhibition ablates this effect, indicating that cellular O2 consumption is the driving factor. RNA-seq analysis revealed that primary human hepatocytes cultured in physioxia experience ischemia-reperfusion injury due to cellular O2 consumption. A reaction-diffusion model is developed to predict pericellular O2 tension a priori, demonstrating that the effect of cellular O2 consumption has the greatest impact in smaller volume culture vessels. By controlling pericellular O2 tension in cell culture, it is found that hypoxia vs. anoxia induce distinct breast cancer transcriptomic and translational responses, including modulation of the hypoxia-inducible factor (HIF) pathway and metabolic reprogramming. Collectively, these findings indicate that breast cancer cells respond non-monotonically to low O2, suggesting that anoxic cell culture is not suitable for modeling hypoxia. Furthermore, it is shown that controlling atmospheric O2 tension in cell culture incubators is insufficient to regulate O2 in cell culture, thus introducing the concept of pericellular O2-controlled cell culture.
    Keywords:  anoxia; breast cancer; cancer metabolism; cell culture; hypoxia; hypoxia‐inducible factors; oxygen; physioxia
    DOI:  https://doi.org/10.1002/advs.202402557
  10. Essays Biochem. 2024 Jun 12. pii: EBC20230079. [Epub ahead of print]
      Malate dehydrogenase (MDH) is a key enzyme in mammalian metabolic pathways in cytosolic and mitochondrial compartments. Regulation of MDH through phosphorylation remains an underexplored area. In this review we consolidate evidence supporting the potential role of phosphorylation in modulating the function of mammalian MDH. Parallels are drawn with the phosphorylation of lactate dehydrogenase, a homologous enzyme, to reveal its regulatory significance and to suggest a similar regulatory strategy for MDH. Comprehensive mining of phosphorylation databases, provides substantial experimental (primarily mass spectrometry) evidence of MDH phosphorylation in mammalian cells. Experimentally identified phosphorylation sites are overlaid with MDH's functional domains, offering perspective on how these modifications could influence enzyme activity. Preliminary results are presented from phosphomimetic mutations (serine/threonine residues changed to aspartate) generated in recombinant MDH proteins serving as a proof of concept for the regulatory impact of phosphorylation. We also examine and highlight several approaches to probe the structural and cellular impact of phosphorylation. This review highlights the need to explore the dynamic nature of MDH phosphorylation and calls for identifying the responsible kinases and the physiological conditions underpinning this modification. The synthesis of current evidence and experimental data aims to provide insights for future research on understanding MDH regulation, offering new avenues for therapeutic interventions in metabolic disorders and cancer.
    Keywords:  MDH; kinase; malate dehydrogenase; metabolism; phosphorylation; post translational modification
    DOI:  https://doi.org/10.1042/EBC20230079
  11. Mol Metab. 2024 Jun 12. pii: S2212-8778(24)00098-X. [Epub ahead of print] 101967
      OBJECTIVE: In response to bacterial inflammation, anorexia of acute illness is protective and is associated with the induction of fasting metabolic programs such as ketogenesis. Forced feeding during the anorectic period induced by bacterial inflammation is associated with suppressed ketogenesis and increased mortality. As ketogenesis is considered essential in fasting adaptation, we sought to determine the role of ketogenesis in illness-induced anorexia.METHODS: A mouse model of inducible hepatic specific deletion of the rate limiting enzyme for ketogenesis (HMG-CoA synthase 2, Hmgcs2) was used to investigate the role of ketogenesis in endotoxemia, a model of bacterial inflammation, and in prolonged starvation.
    RESULTS: Mice deficient of hepatic Hmgcs2 failed to develop ketosis during endotoxemia and during prolonged fasting. Surprisingly, hepatic HMGCS2 deficiency and the lack of ketosis did not affect survival, glycemia, or body temperature in response to endotoxemia. Mice with hepatic ketogenic deficiency also did not exhibit any defects in starvation adaptation and were able to maintain blood glucose, body temperature, and lean mass compared to littermate wild-type controls. Mice with hepatic HMGCS2 deficiency exhibited higher levels of plasma acetate levels in response to fasting.
    CONCLUSIONS: Circulating hepatic-derived ketones do not provide protection against endotoxemia, suggesting that alternative mechanisms drive the increased mortality from forced feeding during illness-induced anorexia. Hepatic ketones are also dispensable for surviving prolonged starvation in the absence of inflammation. Our study challenges the notion that hepatic ketogenesis is required to maintain blood glucose and preserve lean mass during starvation, raising the possibility of extrahepatic ketogenesis and use of alternative fuels as potential means of metabolic compensation.
    Keywords:  HMGCS2; endotoxemia; fasting metabolism; ketogenesis; starvation adaptation
    DOI:  https://doi.org/10.1016/j.molmet.2024.101967
  12. J Vis Exp. 2024 May 24.
      Peripheral mononuclear cells (PBMCs) exhibit robust changes in mitochondrial respiratory capacity in response to health and disease. While these changes do not always reflect what occurs in other tissues, such as skeletal muscle, these cells are an accessible and valuable source of viable mitochondria from human subjects. PBMCs are exposed to systemic signals that impact their bioenergetic state. Thus, expanding our tools to interrogate mitochondrial metabolism in this population will elucidate mechanisms related to disease progression. Functional assays of mitochondria are often limited to using respiratory outputs following maximal substrate, inhibitor, and uncoupler concentrations to determine the full range of respiratory capacity, which may not be achievable in vivo. The conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) by ATP-synthase results in a decrease in mitochondrial membrane potential (mMP) and an increase in oxygen consumption. To provide a more integrated analysis of mitochondrial dynamics, this article describes the use of high-resolution fluorespirometry to measure the simultaneous response of oxygen consumption and mitochondrial membrane potential (mMP) to physiologically relevant concentrations of ADP. This technique uses tetramethylrhodamine methylester (TMRM) to measure mMP polarization in response to ADP titrations following maximal hyperpolarization with complex I and II substrates. This technique can be used to quantify how changes in health status, such as aging and metabolic disease, affect the sensitivity of mitochondrial response to energy demand in PBMCs, T-cells, and monocytes from human subjects.
    DOI:  https://doi.org/10.3791/66863
  13. Front Nutr. 2024 ;11 1356038
      Introduction: Obesity is a multi-factorial disease frequently associated with poor nutritional habits and linked to many detrimental health outcomes. Individuals with obesity are more likely to have increased levels of persistent inflammatory and metabolic dysregulation. The goal of this study was to compare four dietary patterns differentiated by macronutrient content in a postmenopausal model. Dietary patterns were high carbohydrate (HC), high fat (HF), high carbohydrate plus high fat (HCHF), and high protein (HP) with higher fiber.Methods: Changes in body weight and glucose levels were measured in female, ovariectomized C57BL/6 mice after 15 weeks of feeding. One group of five mice fed the HCHF diet was crossed over to the HP diet on day 84, modeling a 21-day intervention. In a follow-up study comparing the HCHF versus HP dietary patterns, systemic changes in inflammation, using an 80-cytokine array and metabolism, by untargeted liquid chromatography-mass spectrometry (LCMS)-based metabolomics were evaluated.
    Results: Only the HF and HCHF diets resulted in obesity, shown by significant differences in body weights compared to the HP diet. Body weight gains during the two-diet follow-up study were consistent with the four-diet study. On Day 105 of the 4-diet study, glucose levels were significantly lower for mice fed the HP diet than for those fed the HC and HF diets. Mice switched from the HCHF to the HP diet lost an average of 3.7 grams by the end of the 21-day intervention, but this corresponded with decreased food consumption. The HCHF pattern resulted in dramatic inflammatory dysregulation, as all 80 cytokines were elevated significantly in the livers of these mice after 15 weeks of HCHF diet exposure. Comparatively, only 32 markers changed significantly on the HP diet (24 up, 8 down). Metabolic perturbations in several endogenous biological pathways were also observed based on macronutrient differences and revealed dysfunction in several nutritionally relevant biosynthetic pathways.
    Conclusion: Overall, the HCHF diet promoted detrimental impacts and changes linked to several diseases, including arthritis or breast neoplasms. Identification of dietary pattern-specific impacts in this model provides a means to monitor the effects of disease risk and test interventions to prevent poor health outcomes through nutritional modification.
    Keywords:  cytokines; dietary patterns; inflammatory biomarkers; macronutrients; metabolic biomarkers; metabolomics; mouse model
    DOI:  https://doi.org/10.3389/fnut.2024.1356038
  14. J Exp Clin Cancer Res. 2024 Jun 14. 43(1): 165
      BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer with an aggressive metastatic phenotype and very poor clinical prognosis. Interestingly, a lower occurrence of PDAC has been described in individuals with severe and long-standing asthma. Here we explored the potential link between PDAC and the glucocorticoid (GC) budesonide, a first-line therapy to treat asthma.METHODS: We tested the effect of budesonide and the classical GCs on the morphology, proliferation, migration and invasiveness of patient-derived PDAC cells and pancreatic cancer cell lines, using 2D and 3D cultures in vitro. Furthermore, a xenograft model was used to investigate the effect of budesonide on PDAC tumor growth in vivo. Finally, we combined genome-wide transcriptome analysis with genetic and pharmacological approaches to explore the mechanisms underlying budesonide activities in the different environmental conditions.
    RESULTS: We found that in 2D culture settings, high micromolar concentrations of budesonide reduced the mesenchymal invasive/migrating features of PDAC cells, without affecting proliferation or survival. This activity was specific and independent of the Glucocorticoid Receptor (GR). Conversely, in a more physiological 3D environment, low nanomolar concentrations of budesonide strongly reduced PDAC cell proliferation in a GR-dependent manner. Accordingly, we found that budesonide reduced PDAC tumor growth in vivo. Mechanistically, we demonstrated that the 3D environment drives the cells towards a general metabolic reprogramming involving protein, lipid, and energy metabolism (e.g., increased glycolysis dependency). This metabolic change sensitizes PDAC cells to the anti-proliferative effect of budesonide, which instead induces opposite changes (e.g., increased mitochondrial oxidative phosphorylation). Finally, we provide evidence that budesonide inhibits PDAC growth, at least in part, through the tumor suppressor CDKN1C/p57Kip2.
    CONCLUSIONS: Collectively, our study reveals that the microenvironment influences the susceptibility of PDAC cells to GCs and provides unprecedented evidence for the anti-proliferative activity of budesonide on PDAC cells in 3D conditions, in vitro and in vivo. Our findings may explain, at least in part, the reason for the lower occurrence of pancreatic cancer in asthmatic patients and suggest a potential suitability of budesonide for clinical trials as a therapeutic approach to fight pancreatic cancer.
    Keywords:  3D spheroids; Budesonide; Cell proliferation; Glucocorticoids; Metabolic reprogramming; Pancreatic cancer
    DOI:  https://doi.org/10.1186/s13046-024-03072-1
  15. Endocrinol Diabetes Metab. 2024 Jul;7(4): e487
      INTRODUCTION: High-fat diet (HFD) consumption and being exposed to daily psychological stress, common environmental factors in modern lifestyle, play an important role on metabolic disorders such as glucose homeostasis impairment. The aim of this study was to investigate the effects of high-fat diet (HFD) and psychological stress combination on metabolic response to chronic psychological stress in male rats.METHOD: Male Wistar rats were divided into HFD, and normal diet (ND) groups and then into stress and nonstress subgroups. The diets were applied for 5 weeks, and psychological stress was induced for 7 consecutive days. Then, blood samples were taken to measure glucose, insulin, free fatty acids (FFA), and leptin and corticosterone concentrations. Subsequently, glucose-stimulated insulin release from pancreatic isolated islets was assessed.
    RESULTS: HFD did not significantly change fasting plasma glucose, insulin and corticosterone levels, whereas increased plasma leptin (7.05 ± 0.33) and FFA (p < 0.01) levels and impaired glucose tolerance. Additionally, HFD and stress combination induced more profound glucose intolerance associated with increased plasma corticosterone (p < 0.01) and leptin (8.63 ± 0.38) levels. However, insulin secretion from isolated islets did not change in the presence of high-fat diet and/or stress.
    CONCLUSION: HFD should be considered as an intensified factor of metabolic impairments caused by chronic psychological stress.
    Keywords:  chronic stress; corticosterone; high‐fat diet; insulin resistance
    DOI:  https://doi.org/10.1002/edm2.487
  16. Research (Wash D C). 2024 ;7 0351
      The tricarboxylic acid (TCA) cycle is capable of providing sufficient energy for the physiological activities under aerobic conditions. Although tumor metabolic reprogramming places aerobic glycolysis in a dominant position, the TCA cycle remains indispensable for tumor cells as a hub for the metabolic linkage and interconversion of glucose, lipids, and certain amino acids. TCA intermediates such as citrate, α-ketoglutarate, succinate, and fumarate are altered in tumors, and they regulate the tumor metabolism, signal transduction, and immune environment to affect tumorigenesis and tumor progression. This article provides a comprehensive review of the modifications occurring in tumor cells in relation to the intermediates of the TCA cycle, which affects tumor pathogenesis and current therapeutic strategy for therapy through targeting TCA cycle in cancer cells.
    DOI:  https://doi.org/10.34133/research.0351
  17. Cancer Lett. 2024 Jun 08. pii: S0304-3835(24)00440-3. [Epub ahead of print]597 217046
      Ferroptosis, a novel form of regulated cell death characterized by iron-mediated lipid peroxidation, holds immense potential in cancer therapeutics due to its role in tumor progression and resistance. This review predominantly explores the intricate relationship between ferroptosis and cholesterol metabolism pathways, mainly focusing on the cholesterol biosynthesis pathway. This review highlights the therapeutic implications of targeting cholesterol metabolism pathways for cancer treatment by delving into the mechanisms underlying ferroptosis regulation. Strategies such as inhibiting HMG-CoA reductase and suppressing squalene synthesis offer promising avenues for inducing ferroptosis in cancer cells. Moreover, insights into targeting the 7-dehydrocholesterol pathway provide novel perspectives on modulating ferroptosis susceptibility and managing ferroptosis-associated diseases. Understanding the interplay between ferroptosis and cholesterol metabolism pathways underscores the potential of lipid metabolism modulation as an innovative therapeutic approach in cancer treatment.
    Keywords:  Biosynthesis; Cancer; Cholesterol; Ferroptosis; Lipid peroxidation
    DOI:  https://doi.org/10.1016/j.canlet.2024.217046
  18. Science. 2024 Jun 14. 384(6701): 1247-1253
      Respiratory complex I is an efficient driver for oxidative phosphorylation in mammalian mitochondria, but its uncontrolled catalysis under challenging conditions leads to oxidative stress and cellular damage. Ischemic conditions switch complex I from rapid, reversible catalysis into a dormant state that protects upon reoxygenation, but the molecular basis for the switch is unknown. We combined precise biochemical definition of complex I catalysis with high-resolution cryo-electron microscopy structures in the phospholipid bilayer of coupled vesicles to reveal the mechanism of the transition into the dormant state, modulated by membrane interactions. By implementing a versatile membrane system to unite structure and function, attributing catalytic and regulatory properties to specific structural states, we define how a conformational switch in complex I controls its physiological roles.
    DOI:  https://doi.org/10.1126/science.ado2075
  19. J Cancer Res Clin Oncol. 2024 Jun 08. 150(6): 296
      Spatial transcriptomics (ST) provides novel insights into the tumor microenvironment (TME). ST allows the quantification and illustration of gene expression profiles in the spatial context of tissues, including both the cancer cells and the microenvironment in which they are found. In cancer research, ST has already provided novel insights into cancer metastasis, prognosis, and immunotherapy responsiveness. The clinical precision oncology application of next-generation sequencing (NGS) and RNA profiling of tumors relies on bulk methods that lack spatial context. The ability to preserve spatial information is now possible, as it allows us to capture tumor heterogeneity and multifocality. In this narrative review, we summarize precision oncology, discuss tumor sequencing in the clinic, and review the available ST research methods, including seqFISH, MERFISH (Vizgen), CosMx SMI (NanoString), Xenium (10x), Visium (10x), Stereo-seq (STOmics), and GeoMx DSP (NanoString). We then review the current ST literature with a focus on solid tumors organized by tumor type. Finally, we conclude by addressing an important question: how will spatial transcriptomics ultimately help patients with cancer?
    Keywords:  Genetics; Precision oncology; Solid tumors; Spatial transcriptomics; Tumor microenvironment
    DOI:  https://doi.org/10.1007/s00432-024-05816-0
  20. Mol Oncol. 2024 Jun 14.
      Gemcitabine plus cisplatin (GC) combination chemotherapy is the primary treatment for advanced bladder cancer (BC) with unresectable or metastatic disease. However, most cases develop resistance to this therapy. We investigated whether drug resistance could be targeted through metabolic reprogramming therapies. Metabolomics analyses in our lab's gemcitabine- and cisplatin-resistant cell lines revealed increased phosphoglycerate dehydrogenase (PHGDH) expression in gemcitabine-resistant cells compared with parental cells. Isocitrate dehydrogenase 2 (IDH2) gain of function stabilized hypoxia-inducible factor1α (HIF1α) expression, stimulating aerobic glycolysis. In gemcitabine-resistant cells, elevated fumaric acid suppressed prolyl hydroxylase domain-containing protein 2/Egl nine homolog 1 (PHD2) and stabilized HIF1α expression. PHGDH downregulation or inhibition in gemcitabine-resistant BC cells inhibited their proliferation, migration, and invasion. Cisplatin-resistant cells showed elevated fatty acid metabolism, upregulating fatty acid synthase (FASN) downstream of tyrosine kinase. Using the fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitor erdafitinib, we inhibited malonyl-CoA production, which is crucial for fatty acid synthesis, and thereby suppressed upregulated HIF1α expression. Combination treatment with NCT503 and erdafitinib synergistically suppressed tumor cell proliferation and induced apoptosis in vitro and in vivo. Understanding these mechanisms could enable innovative BC therapeutic strategies to be developed.
    Keywords:  FASN; FGFR; HIF1α; PHGDH; erdefitinib; metabolism
    DOI:  https://doi.org/10.1002/1878-0261.13684
  21. Methods Mol Biol. 2024 ;2792 163-173
      Photosynthesis and metabolism in plants involve oxygen as both a product and substrate. Oxygen is taken up during photorespiration and respiration and produced through water splitting during photosynthesis. To distinguish between processes that produce or consume O2 in leaves, isotope mass separation and detection by mass spectrometry allows measurement of evolution and uptake of O2 as well as CO2 uptake. This chapter describes how to calculate the rate of Rubisco oxygenation and carboxylation from in vivo gas exchange of stable isotopes of 16O2 and 18O2 with a closed cuvette system for leaf discs and membrane inlet mass spectrometry.
    Keywords:   Carboxylation; Gas exchange; Membrane inlet mass spectrometry; Oxygenation; Stable isotopes; Oxygen exchange
    DOI:  https://doi.org/10.1007/978-1-0716-3802-6_13
  22. Neurochem Res. 2024 Jun 12.
      Elevated levels of D-2-hydroxyglutarate (D-2HG) and L-2-hydroxyglutarate (L-2HG) in the brain are associated with various pathological conditions, potentially contributing to neurological symptoms and neurodegeneration. Previous studies on animal models have revealed their capability to interfere with several cellular processes, including mitochondrial metabolism. Both enantiomers competitively inhibit the enzymatic activity of 2-oxoglutarate-dependent dioxygenases. These enzymes also execute several signaling cascades and regulate the level of covalent modifications on nucleic acids or proteins, e.g., methylation, hydroxylation, or ubiquitination, with an effect on epigenetic regulation of gene expression, protein stability, and intracellular signaling. To investigate the potential impact of 2HG enantiomers on human neuronal cells, we utilized the SH-SY5Y human neuroblastoma cell line as a model. We employed proton nuclear magnetic resonance (1H-NMR) spectroscopy of culture media that provided high-resolution insights into the changes in the content of metabolites. Concurrently, we performed biochemical assays to complement the 1H-NMR findings and to estimate the activities of lactate and 3-hydroxybutyrate dehydrogenases. Our results reveal that both 2HG enantiomers can influence the cellular metabolism of human neuroblastoma cells on multiple levels. Specifically, both enantiomers of 2HG comparably stimulate anaerobic metabolism of glucose and inhibit the uptake of several essential amino acids from the culture media. In this respect, both 2HG enantiomers decreased the catabolism capability of cells to incorporate the leucine-derived carbon atoms into their metabolism and to generate the ketone bodies. These results provide evidence that both enantiomers of 2HG have the potential to influence the metabolic and molecular aspects of human cells. Furthermore, we may propose that increased levels of 2HG enantiomers in the brain parenchyma may alter brain metabolism features, potentially contributing to the etiology of neurological symptoms in patients.
    Keywords:  2-Hydroxyglutarate; Branched-chain Amino acid; Branched-chain keto acid; Ketone body; Metabolism; Neuroblastoma
    DOI:  https://doi.org/10.1007/s11064-024-04188-8
  23. Cardiovasc Diabetol. 2024 Jun 12. 23(1): 199
      BACKGROUND: Metformin and sodium-glucose-cotransporter-2 inhibitors (SGLT2i) are cornerstone therapies for managing hyperglycemia in diabetes. However, their detailed impacts on metabolic processes, particularly within the citric acid (TCA) cycle and its anaplerotic pathways, remain unclear. This study investigates the tissue-specific metabolic effects of metformin, both as a monotherapy and in combination with SGLT2i, on the TCA cycle and associated anaplerotic reactions in both mice and humans.METHODS: Metformin-specific metabolic changes were initially identified by comparing metformin-treated diabetic mice (MET) with vehicle-treated db/db mice (VG). These findings were then assessed in two human cohorts (KORA and QBB) and a longitudinal KORA study of metformin-naïve patients with Type 2 Diabetes (T2D). We also compared MET with db/db mice on combination therapy (SGLT2i + MET). Metabolic profiling analyzed 716 metabolites from plasma, liver, and kidney tissues post-treatment, using linear regression and Bonferroni correction for statistical analysis, complemented by pathway analyses to explore the pathophysiological implications.
    RESULTS: Metformin monotherapy significantly upregulated TCA cycle intermediates such as malate, fumarate, and α-ketoglutarate (α-KG) in plasma, and anaplerotic substrates including hepatic glutamate and renal 2-hydroxyglutarate (2-HG) in diabetic mice. Downregulated hepatic taurine was also observed. The addition of SGLT2i, however, reversed these effects, such as downregulating circulating malate and α-KG, and hepatic glutamate and renal 2-HG, but upregulated hepatic taurine. In human T2D patients on metformin therapy, significant systemic alterations in metabolites were observed, including increased malate but decreased citrulline. The bidirectional modulation of TCA cycle intermediates in mice influenced key anaplerotic pathways linked to glutaminolysis, tumorigenesis, immune regulation, and antioxidative responses.
    CONCLUSION: This study elucidates the specific metabolic consequences of metformin and SGLT2i on the TCA cycle, reflecting potential impacts on the immune system. Metformin shows promise for its anti-inflammatory properties, while the addition of SGLT2i may provide liver protection in conditions like metabolic dysfunction-associated steatotic liver disease (MASLD). These observations underscore the importance of personalized treatment strategies.
    Keywords:  Anaplerosis; Anti-inflammatory effects; Metabolic dysfunction-associated steatotic liver disease (MASLD); Metformin; Pharmacometabolomics; SGLT2 inhibitors; TCA cycle; Type 2 diabetes
    DOI:  https://doi.org/10.1186/s12933-024-02288-x
  24. Crit Rev Food Sci Nutr. 2024 Jun 11. 1-13
      Colorectal cancer incidence (CRC) is influenced by dietary factors, yet the impact of diet on CRC-specific mortality and recurrence-free survival (RFS) remains unclear. This review provides a narrative summary of existing research on dietary factors affecting CRC-specific mortality, RFS, and disease-free survival (DFS). This study searched electronic databases to identify cross-sectional/prospective research investigating dietary intake on CRC-specific mortality, RFS, or DFS. Twenty-eight studies were included in the corpus. Because of high study heterogeneity, we performed a narrative synthesis of studies. Limited, but suggestive evidence indicates beneficial effects of adhering to the American Cancer Society (ACS) guidelines and a plant rich low-carbohydrate diet on risk of CRC-specific mortality, potentially driven by fiber from cereals, vegetables, and wholegrains, but not fruit. For RFS and DFS, a Western dietary pattern, high intake of refined grains, and sugar sweetened beverages correlated with increased risk of CRC recurrence and development of disease/death. Conversely, greater adherence to the ACS dietary and alcohol guidelines, higher ω-3 polyunsaturated fatty acids, and dark fish consumption reduced risk. Our findings underscore the need for (i) standardized investigations into diet's role in CRC survivorship, including endpoints, and (ii) comprehensive analyses to isolate specific effects within correlated lifestyle components.
    Keywords:  colorectal cancer recurrence; colorectal cancer survivorship; dietary intake; dietary patterns
    DOI:  https://doi.org/10.1080/10408398.2024.2360068
  25. Leuk Lymphoma. 2024 Jun 11. 1-9
      Since 1980's, the established/standard treatment of acute myeloid leukemia (AML) is cytarabine infusion with anthracycline (7 + 3 regimen). We compared the 7 + 3 regimen in older secondary/high-risk AML patientsfrom a clinical trial with a matched population from the Swedish AML Registrytreated withan increased cytarabine dose in induction and consolidation as recommended in the Swedish National Guidelines since 2005. After successfulpropensity score matching, 104 patients per group were included. The primary outcome was overall survival (OS), and standard dosed patients had a median OS of 6.4 versus 10.7 months with increased dose intensity (hazard ratio:0.69, p = 0.012), with 5-year OS of 8.7% and 18.1%, andremission rates of 36% and 60%, respectively (p < 0.001). Median OS after allogeneic hematopoietic cell transplantation (in 27.9% per group) was 10.4 and 20.7 months, respectively. We conclude that the more intensive cytarabine schedule seems to provide improved outcomes inthe investigated AML patient group.
    Keywords:  Conventional 7 + 3 regimen; external control arm; hematopoietic cell transplantation; overall survival; real-world data; standard of care
    DOI:  https://doi.org/10.1080/10428194.2024.2363430
  26. Cell Death Dis. 2024 Jun 12. 15(6): 413
      Acute myeloid leukaemia (AML) is a highly aggressive and devastating malignancy of the bone marrow and blood. For decades, intensive chemotherapy has been the frontline treatment for AML but has yielded only poor patient outcomes as exemplified by a 5-year survival rate of < 30%, even in younger adults. As knowledge of the molecular underpinnings of AML has advanced, so too has the development new strategies with potential to improve the treatment of AML patients. To date the most promising of these targeted agents is the BH3-mimetic venetoclax which in combination with standard of care therapies, has manageable non-haematological toxicity and exhibits impressive efficacy. However, approximately 30% of AML patients fail to respond to venetoclax-based regimens and almost all treatment responders eventually relapse. Here, we review the emerging mechanisms of intrinsic and acquired venetoclax resistance in AML and highlight recent efforts to identify novel strategies to overcome resistance to venetoclax.
    DOI:  https://doi.org/10.1038/s41419-024-06810-7
  27. Front Mol Biosci. 2024 ;11 1379971
      The interaction between the tumor microenvironment (TME) and the cancer cells is a complex and mutually beneficial system that leads to rapid cancer cells proliferation, metastasis, and resistance to therapy. It is now recognized that cancer cells are not isolated, and tumor progression is governed among others, by many components of the TME. The reciprocal cross-talk between cancer cells and their microenvironment can be indirect through the secretion of extracellular matrix (ECM) proteins and paracrine signaling through exosomes, cytokines, and growth factors, or direct by cell-to-cell contact mediated by cell surface receptors and adhesion molecules. Among TME components, cancer-associated fibroblasts (CAFs) are of unique interest. As one of the most abundant components of the TME, CAFs play key roles in the reorganization of the extracellular matrix, facilitating metastasis and chemotherapy evasion. Both direct and indirect roles have been described for CAFs in modulating tumor progression. In this review, we focus on recent advances in understanding the role of direct contact between cancer cells and cancer-associated fibroblasts (CAFs) in driving tumor development and metastasis. We also summarize recent findings on the role of direct contact between cancer cells and CAFs in chemotherapy resistance.
    Keywords:  EMT-epithelial to mesenchymal transformation; TME; cancer-associated fibroblasts; chemotherapy resistance; direct cell-cell communication
    DOI:  https://doi.org/10.3389/fmolb.2024.1379971
  28. Comput Biol Med. 2024 Jun 13. pii: S0010-4825(24)00820-5. [Epub ahead of print]178 108735
      BACKGROUND: Acute myeloid leukemia (AML) is the most common malignant myeloid disorder in adults and the fifth most common malignancy in children, necessitating advanced technologies for outcome prediction.METHOD: This study aims to enhance prognostic capabilities in AML by integrating multi-omics data, especially gene expression and methylation, through network-based feature selection methodologies. By employing artificial intelligence and network analysis, we are exploring different methods to build a machine learning model for predicting AML patient survival. We evaluate the effectiveness of combining omics data, identify the most informative method for network integration and compare the performance with standard feature selection methods.
    RESULTS: Our findings demonstrate that integrating gene expression and methylation data significantly improves prediction accuracy compared to single omics data. Among network integration methods, our study identifies the best approach that improves informative feature selection for predicting patient outcomes in AML. Comparative analyses demonstrate the superior performance of the proposed network-based methods over standard techniques.
    CONCLUSIONS: This research presents an innovative and robust methodology for building a survival prediction model tailored to AML patients. By leveraging multilayer network analysis for feature selection, our approach contributes to improving the understanding and prognostic capabilities in AML and laying the foundation for more effective personalized therapeutic interventions in the future.
    Keywords:  Integrated network analysis; Machine learning; Multi-omics
    DOI:  https://doi.org/10.1016/j.compbiomed.2024.108735
  29. bioRxiv. 2024 Jun 01. pii: 2024.05.27.596060. [Epub ahead of print]
      An oxygen sensor-mounted fine-needle biopsy tool was used for in vivo measurement of oxygen levels in tumor xenografts. The system provides a means of measuring the oxygen content in harvested tumor tissue from specific locations. Oxygen in human tumor xenografts in a murine model was observed for over 1 min. Tissues were mapped in relation to oxygen tension (pO2) readings and sampled for conventional cytological examination. Careful modeling of the pO2 readings over 60 seconds yielded a diffusion coefficient for oxygen at the sensor tip, providing additional diagnostic information about the tissue before sampling. Oxygen level measurement may provide a useful adjunct to the use of biomarkers in tumor diagnosis.
    Keywords:  adenocarcinoma; breast carcinoma; hypoxia; oxygen diffusion; tumor xenograft in mice
    DOI:  https://doi.org/10.1101/2024.05.27.596060
  30. J Exp Clin Cancer Res. 2024 Jun 14. 43(1): 166
      BACKGROUND: Breast cancer (BC) is a complex disease, showing heterogeneity in the genetic background, molecular subtype, and treatment algorithm. Historically, treatment strategies have been directed towards cancer cells, but these are not the unique components of the tumor bulk, where a key role is played by the tumor microenvironment (TME), whose better understanding could be crucial to obtain better outcomes.METHODS: We evaluated mitochondrial transfer (MT) by co-culturing Adipose stem cells with different Breast cancer cells (BCCs), through MitoTracker assay, Mitoception, confocal and immunofluorescence analyses. MT inhibitors were used to confirm the MT by Tunneling Nano Tubes (TNTs). MT effect on multi-drug resistance (MDR) was assessed using Doxorubicin assay and ABC transporter evaluation. In addition, ATP production was measured by Oxygen Consumption rates (OCR) and Immunoblot analysis.
    RESULTS: We found that MT occurs via Tunneling Nano Tubes (TNTs) and can be blocked by actin polymerization inhibitors. Furthermore, in hybrid co-cultures between ASCs and patient-derived organoids we found a massive MT. Breast Cancer cells (BCCs) with ASCs derived mitochondria (ADM) showed a reduced HIF-1α expression in hypoxic conditions, with an increased ATP production driving ABC transporters-mediated multi-drug resistance (MDR), linked to oxidative phosphorylation metabolism rewiring.
    CONCLUSIONS: We provide a proof-of-concept of the occurrence of Mitochondrial Transfer (MT) from Adipose Stem Cells (ASCs) to BC models. Blocking MT from ASCs to BCCs could be a new effective therapeutic strategy for BC treatment.
    Keywords:  Adipose Stem cells; Breast Cancer; Mitoception; Mitochondrial transfer; Multi-drug resistance; Tunneling nanotubes
    DOI:  https://doi.org/10.1186/s13046-024-03087-8