Exp Hematol Oncol. 2025 Feb 15. 14(1): 15
Mingyue Yao,
Wenzhong Yan,
Yafang Wang,
Yu Zhao,
Xiaowei Xu,
Yujun Chen,
Chengcheng Yu,
Yingnian Li,
Hualiang Jiang,
Jie Shen,
Jianjun Cheng,
Chengying Xie.
BACKGROUND: Despite initial success with FLT3 inhibitors (FLT3is), outcomes for FLT3-ITD acute myeloid leukemia (AML) patients remain unsatisfactory, underscoring the need for more effective treatment options. Epigenetic modifications, such as histone acetylation, contribute to AML's onset and persistence, advocating the potential for epigenetic therapies. However, the poor specificity of pan-histone deacetylase inhibitors (HDACis) leads to undesirable adverse effects, prompting the need for isoform-specific HDACis. This study aims to explore the antileukemic activities and mechanisms of IHCH9033, a novel class I HDACi, alone or combined with FLT3i in FLT3-ITD AML.
METHODS: The viability of AML cell lines and primary AML cells treated with HDACis alone or in combination with FLT3i was detected by MTT or CCK8 assay. Flow cytometry was utilized to examine cell apoptosis, cell cycle progression and ROS production. RNA sequencing analysis, RT-qPCR, western blotting, and co-immunoprecipitation assays were employed to elucidate the molecule mechanisms. The in vivo anti-leukemia efficacy was tested in xenografted mice models derived from FLT3-ITD cell lines and primary AML patients.
RESULTS: Here, we identified IHCH9033, a novel selective class I HDACi, which exhibited an increased antitumor effect in FLT3-ITD AML through effectively eliminating leukemia burden and overcoming resistance to FLT3i. Mechanically, IHCH9033 selectively inhibited DNA repair in FLT3-ITD AML cells, leading to the accumulation of DNA damage that eventually resulted in cell cycle arrest and apoptosis. Additionally, IHCH9033 induced HSP90 acetylation, FLT3 ubiquitination, and proteasomal degradation of FLT3, thereby inhibiting FLT3 downstream signaling. Notably, IHCH9033 maintained its potency in both FLT3i-resistant AML cell lines and primary-resistant patient samples, and exerted strong synergy with the FLT3i quizartinib, leading to tumor regression in FLT3-ITD/TKD AML xenografts. In patient-derived xenografts, the treatment with IHCH9033, both alone and in combination, led to nearly complete eradication of the AML burden, without significant adverse effects.
CONCLUSIONS: Our study shows that IHCH9033, a novel class I HDACi with a desirable pharmacological profile, is a promising drug candidate for FLT3-ITD AML, and suggests a strategy of combining class I HDACis and FLT3is in AML clinical trials to increase efficacy and overcome resistance, thus potentially providing a curative treatment option.
Keywords: Acute myeloid leukemia; DNA damage response; Drug resistance; FLT3-ITD mutation; HDAC inhibitor; Synergistic effect