bims-meglyc Biomed News
on Metabolic disorders affecting glycosylation
Issue of 2023‒01‒15
seventeen papers selected by
Silvia Radenkovic
Frontiers in Congenital Disorders of Glycosylation Consortium


  1. Autophagy. 2023 Jan 12.
      ​​Degradation of macromolecules delivered to lysosomes by processes such as autophagy or endocytosis is crucial for cellular function. Lysosomes require more than 60 soluble hydrolases in order to catabolize such macromolecules. These soluble hydrolases are tagged with mannose-6-phosphate (M6P) moieties in sequential reactions by the Golgi-resident GlcNAc-1-phosphotransferase complex and NAGPA/UCE/uncovering enzyme (N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase), which allows their delivery to endosomal/lysosomal compartments through trafficking mediated by cation-dependent and -independent mannose-6-phosphate receptors (MPRs). We and others recently identified TMEM251 as a novel regulator of the M6P pathway via independent genome-wide genetic screening strategies. We renamed TMEM251 to LYSET (lysosomal enzyme trafficking factor) to establish nomenclature reflective to this gene's function. LYSET is a Golgi-localized transmembrane protein important for the retention of the GlcNAc-1-phosphotransferase complex in the Golgi-apparatus. The current understanding of LYSET's importance regarding human biology is 3-fold: 1) highly pathogenic viruses that depend on lysosomal hydrolase activity require LYSET for infection. 2) The presence of LYSET is critical for cancer cell proliferation in nutrient-deprived environments in which extracellular proteins must be catabolized. 3) Inherited pathogenic alleles of LYSET can cause a severe inherited disease which resembles GlcNAc-1-phosphotransferase deficiency (i.e., mucolipidosis type II).
    Keywords:  GlcNAc-1-phosphotransferase; Golgi-apparatus; lysosomal enzyme trafficking; lysosome; mannose-6-phosphate; mucolipidosis type II
    DOI:  https://doi.org/10.1080/15548627.2023.2167376
  2. Hypertens Res. 2023 Jan 13.
      
    Keywords:  Cardiac remodeling; Intermittent hypoxia; O-GlcNAcylation
    DOI:  https://doi.org/10.1038/s41440-023-01171-8
  3. Sci Rep. 2023 Jan 11. 13(1): 567
      The majority of mammalian proteins are glycosylated, with the glycans serving to modulate a wide range of biological activities. Variations in protein glycosylation can have dramatic effects on protein stability, immunogenicity, antibody effector function, pharmacological safety and potency, as well as serum half-life. The glycosylation of therapeutic biologicals is a critical quality attribute (CQA) that must be carefully monitored to ensure batch-to-batch consistency. Notably, many factors can affect the composition of the glycans during glycoprotein production, and variations in glycosylation are among the leading causes of pharmaceutical batch rejection. Currently, the characterization of protein glycosylation relies heavily on methods that employ chromatography and/or mass spectrometry, which require a high level of expertise, are time-consuming and costly and, because they are challenging to implement during in-process biologics production or during in vitro glycan modification, are generally performed only post-production. Here we report a simplified approach to assist in monitoring glycosylation features during glycoprotein engineering, that employs flow cytometry using fluorescent microspheres chemically coupled to high-specificity glycan binding reagents. In our GlycoSense method, a range of carbohydrate-sensing microspheres with distinct optical properties may be combined into a multiplex suspension array capable of detecting multiple orthogonal glycosylation features simultaneously, using commonplace instrumentation, without the need for glycan release. The GlycoSense method is not intended to replace more detailed post-production glycan profiling, but instead, to complement them by potentially providing a cost-effective, rapid, yet robust method for use at-line as a process analytic technology (PAT) in a biopharmaceutical workflow or at the research bench. The growing interest in using in vitro glycoengineering to generate glycoproteins with well-defined glycosylation, provides motivation to demonstrate the capabilities of the GlycoSense method, which we apply here to monitor changes in the protein glycosylation pattern (GlycoPrint) during the in vitro enzymatic modification of the glycans in model glycoproteins.
    DOI:  https://doi.org/10.1038/s41598-023-27634-z
  4. Cell. 2022 Dec 30. pii: S0092-8674(22)01529-X. [Epub ahead of print]
      O-GlcNAc is a dynamic post-translational modification (PTM) that regulates protein functions. In studying the regulatory roles of O-GlcNAc, a major roadblock is the inability to change O-GlcNAcylation on a single protein at a time. Herein, we developed a dual RNA-aptamer-based approach that simultaneously targeted O-GlcNAc transferase (OGT) and β-catenin, the key transcription factor of the Wnt signaling pathway, to selectively increase O-GlcNAcylation of the latter without affecting other OGT substrates. Using the OGT/β-catenin dual-specificity aptamers, we found that O-GlcNAcylation of β-catenin stabilizes the protein by inhibiting its interaction with β-TrCP. O-GlcNAc also increases β-catenin's interaction with EZH2, recruits EZH2 to promoters, and dramatically alters the transcriptome. Further, by coupling riboswitches or an inducible expression system to aptamers, we enabled inducible regulation of protein-specific O-GlcNAcylation. Together, our findings demonstrate the efficacy and versatility of dual-specificity aptamers for regulating O-GlcNAcylation on individual proteins.
    Keywords:  EZH2; O-GlcNAc; O-GlcNAc transferase; RNA; Wnt signaling; aptamer; post-translational modification; riboswitch; transcriptome; β-catenin
    DOI:  https://doi.org/10.1016/j.cell.2022.12.016
  5. Diagnostics (Basel). 2022 Dec 27. pii: 75. [Epub ahead of print]13(1):
      Mucopolysaccharidosis (MPS) is a group of disorders caused by the reduced or absent activity of enzymes involved in the glycosaminoglycans (GAGs) degradation; the consequence is the progressive accumulation of the substrate (dermatan, heparan, keratan or chondroitin sulfate) in the lysosomes of cells belonging to several tissues. The rarity, the broad spectrum of manifestations, the lack of strict genotype-phenotype association, and the progressive nature of MPS make diagnosing this group of conditions challenging. Musculoskeletal involvement represents a common and prominent feature of MPS. Joint and bone abnormalities might be the main clue for diagnosing MPS, especially in attenuated phenotypes; therefore, it is essential to increase the awareness of these conditions among the pediatric rheumatology and orthopedic communities since early diagnosis and treatment are crucial to reduce the disease burden of these patients. Nowadays, enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT) are available for some MPS types. We describe the musculoskeletal characteristics of MPS patients through a literature review of MPS cases misdiagnosed as having rheumatologic or orthopedic conditions.
    Keywords:  early diagnosis; inflammation; lysosomal storage diseases; mucopolysaccharidosis; musculoskeletal
    DOI:  https://doi.org/10.3390/diagnostics13010075
  6. Int J Mol Sci. 2022 Dec 28. pii: 477. [Epub ahead of print]24(1):
      Mucopolysaccharidoses (MPSs) constitute a heterogeneous group of lysosomal storage disorders characterized by the lysosomal accumulation of glycosaminoglycans (GAGs). Although lysosomal dysfunction is mainly affected, several cellular organelles such as mitochondria, endoplasmic reticulum, Golgi apparatus, and their related process are also impaired, leading to the activation of pathophysiological cascades. While supplying missing enzymes is the mainstream for the treatment of MPS, including enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), or gene therapy (GT), the use of modulators available to restore affected organelles for recovering cell homeostasis may be a simultaneous approach. This review summarizes the current knowledge about the cellular consequences of the lysosomal GAGs accumulation and discusses the use of potential modulators that can reestablish normal cell function beyond ERT-, HSCT-, or GT-based alternatives.
    Keywords:  endoplasmic reticulum; glycosaminoglycans; lysosome; mitochondria; mucopolysaccharidoses
    DOI:  https://doi.org/10.3390/ijms24010477
  7. Metab Eng. 2023 Jan 04. pii: S1096-7176(22)00158-6. [Epub ahead of print]
      Chinese hamster ovary (CHO) cells are extensively used for the production of glycoprotein therapeutics proteins, for which N-linked glycans are a critical quality attribute due to their influence on activity and immunogenicity. Manipulation of protein glycosylation is commonly achieved through cell or process engineering, which are often guided by mathematical models. However, each study considers a unique glycosylation reaction network that is tailored around the cell line and product at hand. Herein, we use 200 glycan datasets for both recombinantly produced and native proteins from different CHO cell lines to reconstruct a comprehensive reaction network, CHOGlycoNET, based on the individual minimal reaction networks describing each dataset. CHOGlycoNET is used to investigate the distribution of mannosidase and glycosyltransferase enzymes in the Golgi apparatus and identify key network reactions using machine learning and dimensionality reduction techniques. CHOGlycoNET can be used for accelerating glycomodel development and predicting the effect of glycoengineering strategies. Finally, CHOGlycoNET is wrapped in a SBML file to be used as a standalone model or in combination with CHO cell genome scale models.
    Keywords:  Chinese hamster ovary cells; Glycoengineering; Protein glycosylation; Systems glycobiology
    DOI:  https://doi.org/10.1016/j.ymben.2022.12.009
  8. Int J Mol Sci. 2022 Dec 22. pii: 197. [Epub ahead of print]24(1):
      Extant biology uses RNA to record genetic information and proteins to execute biochemical functions. Nucleotides are translated into amino acids via transfer RNA in the central dogma. tRNA is essential in translation as it connects the codon and the cognate amino acid. To reveal how the translation emerged in the prebiotic context, we start with the structure and dissection of tRNA, followed by the theory and hypothesis of tRNA and amino acid recognition. Last, we review how amino acids assemble on the tRNA and further form peptides. Understanding the origin of life will also promote our knowledge of artificial living systems.
    Keywords:  RNA world; origin of life; peptidyl transfer; ribosome; transfer RNA
    DOI:  https://doi.org/10.3390/ijms24010197
  9. J Pediatr Endocrinol Metab. 2023 Jan 13.
      The past 50 years of research in pediatric bone and mineral metabolism have led to remarkable progress in the identification and characterization of disorders that affect the developing skeleton. Progress has been facilitated through advances in both technology and biology and this paper provides a brief description of some but not all of the key findings, including identification of the calcium sensing receptor and the polypeptides parathyroid hormone and parathyroid hormone-related protein as well as their shared receptor and signal generating pathways; the elucidation of vitamin D metabolism and actions; discovery of fibroblast growth factor 23 (FGF23), the sodium-phosphate co-transporters and the other components that regulate phosphate metabolism. Moreover, the past half-century of research has led to the delineation of the molecular bases for genetic forms of hypoparathyroidism, pseudohypoparathyroidism, and primary hyperparathyroidism as well as the determination of the genetic causes of osteogenesis imperfecta, osteopetrosis, hypophosphatasia, and other disorders of mineral/bone homeostasis. During the next decade we expect that many of these fundamental discoveries will lead to the development of innovative treatments that will improve the lives of children with these disorders.
    Keywords:  bone; bone metabolism; calcium; mineral
    DOI:  https://doi.org/10.1515/jpem-2022-0624
  10. Int J Environ Res Public Health. 2022 Dec 27. pii: 395. [Epub ahead of print]20(1):
      Rare diseases are a subject of great scientific and health interest that has been on the rise in recent years [...].
    DOI:  https://doi.org/10.3390/ijerph20010395
  11. Int J Mol Sci. 2022 Dec 26. pii: 361. [Epub ahead of print]24(1):
      This Special Issue is intended to highlight recent advances in genetic code expansion, particularly the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins [...].
    DOI:  https://doi.org/10.3390/ijms24010361
  12. Anal Chem. 2023 Jan 12.
      O-Acetylation is a common modification of sialic acid, playing a significant role in glycoprotein stability, immune response, and cell development. Due to the lack of efficient methods for direct analysis of O-acetylated sialoglycopeptides (O-AcSGPs), the majority of identified O-acetylated sialic acids (O-AcSia) until now had no glycosite/glycoprotein information. Herein, we introduced a new workflow for precise interpretation of O-AcSGPs with probability estimation by recognizing the characteristic B and Y ions of O-AcSias. With further optimization of mass spectrometry parameters, the method allowed us to identify a total of 171 unique O-AcSGPs in mouse serum. Although the majority of these O-AcSGPs were at a relatively low abundance compared with their non-O-acetylated states, they were mainly involved in peptidase/endopeptidase inhibitor activities. The method paves the way for large-scale structural and functional analyses of site-specific O-AcSias in various complex samples as well as further identification of many other similar chemical modifications on glycoproteins.
    DOI:  https://doi.org/10.1021/acs.analchem.2c04358
  13. Cytotherapy. 2023 Jan 10. pii: S1465-3249(22)01051-9. [Epub ahead of print]
      BACKGROUND: Consistent progress has been made to create more efficient and useful CRISPR-Cas9-based molecular toolsfor genomic modification.METHODS: This review focuses on recent articles that have employed base editors (BEs) for both clinical and research purposes.
    RESULTS: CRISPR-Cas9 BEs are a useful system because of their highefficiency and broad applicability to gene correction and disruption. In addition, base editing has beensuggested as a safer approach than other CRISPR-Cas9-based systems, as it limits double-strand breaksduring multiplex gene knockout and does not require a toxic DNA donor molecule for genetic correction.
    CONCLUSION: As such, numerous industry and academic groups are currently developing base editing strategies withclinical applications in cancer immunotherapy and gene therapy, which this review will discuss, with a focuson current and future applications of in vivo BE delivery.
    Keywords:  base editor; cancer immunotherapy; gene therapy; hematopoietic stem cell; multiplex gene editing; sickle cell
    DOI:  https://doi.org/10.1016/j.jcyt.2022.11.013
  14. Bioorg Chem. 2022 Sep 09. pii: S0045-2068(22)00545-4. [Epub ahead of print]131 106139
      O-GlcNAcylation is a ubiquitous post-translational modification governing vital biological processes in cancer, diabetes and neurodegeneration. Metabolic chemical reporters (MCRs) containing bio-orthogonal groups such as azido or alkyne, are widely used for labeling of interested proteins. However, most MCRs developed for O-GlcNAc modification are not specific and always lead to unexpected side reactions termed S-glyco-modification. Here, we attempt to develop a new MCR of Ac34FGlcNAz that replacing the 4-OH of Ac4GlcNAz with fluorine, which is supposed to abolish the epimerization of GALE and enhance the selectivity. The discoveries demonstrate that Ac34FGlcNAz is a powerful MCR for O-GlcNAcylation with high efficiency and the process of this labeling is conducted by the two enzymes of OGT and OGA. Most importantly, Ac34FGlcNAz is predominantly incorporated intracellular proteins in the form of O-linkage and leads to negligible S-glyco-modification, indicating it is a selective MCR for O-GlcNAcylation. Therefore, we reason that Ac34FGlcNAz developed here is a well characterized MCR of O-GlcNAcylation, which provides more choice for label and enrichment of O-GlcNAc associated proteins.
    Keywords:  Metabolic labeling; O-GlcNAc; OGA; OGT; S-glyco-modification
    DOI:  https://doi.org/10.1016/j.bioorg.2022.106139
  15. Front Endocrinol (Lausanne). 2022 ;13 1047545
      Glucose is the most important substrate for proper brain functioning and development, with an increased glucose consumption in relation to the need of creating new brain structures and connections. Therefore, alterations in glucose homeostasis will inevitably be associated with changes in the development of the Nervous System. Several studies demonstrated how the alteration of glucose homeostasis - both hyper and hypoglycemia- may interfere with the development of brain structures and cognitivity, including deficits in intelligence quotient, anomalies in learning and memory, as well as differences in the executive functions. Importantly, differences in brain structure and functionality were found after a single episode of diabetic ketoacidosis suggesting the importance of glycemic control and stressing the need of screening programs for type 1 diabetes to protect children from this dramatic condition. The exciting progresses of the neuroimaging techniques such as diffusion tensor imaging, has helped to improve the understanding of the effects, outcomes and mechanisms underlying brain changes following dysglycemia, and will lead to more insights on the physio-pathological mechanisms and related neurological consequences about hyper and hypoglycemia.
    Keywords:  brain; glucose metabolism; hyperglycemia; hypoglycemia; type 1 diabetes
    DOI:  https://doi.org/10.3389/fendo.2022.1047545
  16. Nutrients. 2023 Jan 01. pii: 204. [Epub ahead of print]15(1):
      The sugar alcohol erythritol is a relatively new food ingredient. It is naturally occurring in plants, however, produced commercially by fermentation. It is also produced endogenously via the pentose phosphate pathway (PPP). Consumers perceive erythritol as less healthy than sweeteners extracted from plants, including sucrose. This review evaluates that perspective by summarizing current literature regarding erythritol's safety, production, metabolism, and health effects. Dietary erythritol is 30% less sweet than sucrose, but contains negligible energy. Because it is almost fully absorbed and excreted in urine, it is better tolerated than other sugar alcohols. Evidence shows erythritol has potential as a beneficial replacement for sugar in healthy and diabetic subjects as it exerts no effects on glucose or insulin and induces gut hormone secretions that modulate satiety to promote weight loss. Long-term rodent studies show erythritol consumption lowers body weight or adiposity. However, observational studies indicate positive association between plasma erythritol and obesity and cardiometabolic disease. It is unlikely that dietary erythritol is mediating these associations, rather they reflect dysregulated PPP due to impaired glycemia or glucose-rich diet. However, long-term clinical trials investigating the effects of chronic erythritol consumption on body weight and risk for metabolic diseases are needed. Current evidence suggests these studies will document beneficial effects of dietary erythritol compared to caloric sugars and allay consumer misperceptions.
    Keywords:  erythritol; non-nutritive sweeteners; obesity; polyol; type II diabetes
    DOI:  https://doi.org/10.3390/nu15010204
  17. Proc Natl Acad Sci U S A. 2023 Jan 17. 120(3): e2218332120
      O-GlcNAc transferase (OGT) modifies serine and threonine residues on nuclear and cytosolic proteins with O-linked N-acetylglucosamine (GlcNAc). OGT is essential for mammalian cell viability, but the underlying mechanisms are still enigmatic. We performed a genome-wide CRISPR-Cas9 screen in mouse embryonic stem cells (mESCs) to identify candidates whose depletion rescued the block in cell proliferation induced by OGT deficiency. We show that the block in cell proliferation in OGT-deficient cells stems from mitochondrial dysfunction secondary to mTOR (mechanistic target of rapamycin) hyperactivation. In normal cells, OGT maintains low mTOR activity and mitochondrial fitness through suppression of proteasome activity; in the absence of OGT, increased proteasome activity results in increased steady-state amino acid levels, which in turn promote mTOR lysosomal translocation and activation, and increased oxidative phosphorylation. mTOR activation in OGT-deficient mESCs was confirmed by an independent phospho-proteomic screen. Our study highlights a unique series of events whereby OGT regulates the proteasome/ mTOR/ mitochondrial axis in a manner that maintains homeostasis of intracellular amino acid levels, mitochondrial fitness, and cell viability. A similar mechanism operates in CD8+ T cells, indicating its generality across mammalian cell types. Manipulating OGT activity may have therapeutic potential in diseases in which this signaling pathway is impaired.
    Keywords:  OGT; genome-wide CRISPR/Cas9 screen; mTOR; mitochondrion; proteasome
    DOI:  https://doi.org/10.1073/pnas.2218332120