Ann Thorac Surg. 2019 Dec 14. pii: S0003-4975(19)31875-2. [Epub ahead of print]
Kemp H Kernstine,
Brandon Faubert,
Quyen N Do,
Thomas J Rogers,
Christopher T Hensley,
Ling Cai,
Jose Torrealba,
Dwight Oliver,
Jason W Waschmann,
Robert E Lenkinski,
Craig R Malloy,
Ralph J Deberardinis.
BACKGROUND: In non-small cell lung cancer (NSCLC), fluorodeoxyglucose positron emission tomography (FDG-PET) assists in diagnosis, staging, and evaluating treatment response. One parameter of FDG-PET, the maximum standard uptake value (SUVm), is considered an objective measure of glucose uptake. However, little is known about the fate of glucose in FDG-avid lung tumors in vivo. The objective is to use stable glucose isotope tracing to determine if the SUVm predicts glycolytic metabolism, or other glucose fates in tumors.
METHODS: In this prospective IRB-approved clinical trial, 52 untreated potentially-resectable confirmed NSCLC patients underwent FDG-PET computed tomography. During surgery, the patients were infused with 13C-glucose. Blood, tumor (T) and normal lung (NL) samples were analyzed by mass spectrometry to determine 13C enrichment in glycolytic intermediates. These values were compared with clinical parameters including SUVm, maximum tumor diameter (TD), stage, grade, and MIB1/Ki67 proliferation index.
RESULTS: For each patient, 13C-enrichment in each metabolite was compared between tumor and adjacent lung. Although all tumors metabolized glucose, SUVm did not correlate with glycolytic intermediate labeling. Rather, SUVm correlated with markers indicating the use of other respiratory substrates, including lactate, and with the proliferation index.
CONCLUSIONS: SUVm does not correlate with glycolytic metabolism in human NSCLC, but does correlate with the proliferation index, suggesting that SUVm predicts glucose use by pathways other than glycolysis. These pathways may offer alternative therapeutic targets, including biosynthetic pathways required for cell proliferation. The research techniques in this study offer the opportunity to understand the relationships between SUVm, tumor metabolism, and therapeutic vulnerabilities in human NSCLCs.