bims-meluca Biomed News
on Metabolism of non-small cell lung carcinoma
Issue of 2021‒03‒14
two papers selected by
Cristina Muñoz Pinedo
L’Institut d’Investigació Biomèdica de Bellvitge


  1. Lung. 2021 Mar 10.
      OBJECTIVE: The aim of this study was to evaluate associations between pretreatment physical status parameters and tolerance of concurrent chemoradiation (cCHRT) and survival among patients with stage III non-small cell lung cancer (NSCLC).METHODS: A retrospective cohort study was conducted among patients with stage III NSCLC who had received cCHRT between 2006 and 2015. Multivariate independent associations were analysed between the pretreatment parameters age, Charlson comorbidity index, World Health Organization performance status (WHO performance status), body mass index (BMI), fat-free mass index (FFMI), maximal handgrip strength, forced expiratory volume in one second and carbon monoxide lung diffusion capacity on the one hand with tolerance of cCHRT (defined as a received radiation dose at least equal to the prescribed radiation dose) and survival on the other hand.
    RESULTS: 527 of 577 patients (91.3%) tolerated cCHRT. A WHO performance status ≥ 2 (odds ratio (OR) 0.43) and BMI < 18.5 kg/m2 (OR 0.36) were associated with poorer tolerance of cCHRT. In the total group, a WHO performance status ≥ 2 (hazard ratio (HR) 1.73), low FFMI (HR 1.23) and intolerance of cCHRT (HR 1.55) were associated with poorer survival.
    CONCLUSION: In patients with stage III NSCLC receiving cCHRT, poor WHO performance status and BMI < 18.5 kg/m2 were independently associated with tolerance of cCHRT. Physical status parameters and intolerance of cCHRT were independently associated with poorer survival. Besides using this information for treatment decisions, optimizing physical status in patients at risk for intolerance of cCHRT might be a next step for improving treatment outcomes.
    Keywords:  Concurrent chemoradiation; Non-small cell lung cancer; Pretreatment risk assessment; Survival; Treatment tolerance
    DOI:  https://doi.org/10.1007/s00408-021-00427-9
  2. Clin Ther. 2021 Mar 07. pii: S0149-2918(21)00055-2. [Epub ahead of print]
      PURPOSE: There is a need for efficient, convenient, and inexpensive methods to accurately diagnose the clinical stage of lung cancer and evaluate the efficacy of chemotherapy in patients with lung cancer. Although growth/differentiation factor 15 (GDF)-15 has great potential as a tumor marker, supporting clinical evidence is still lacking. In this study, we aimed to analyze the relationship between serum GDF15 concentration and the clinical characteristics of patients with lung cancer, and to assess the value of GDF15 in the diagnosis and curative effect of chemotherapy.METHODS: The study comprised 160 participants in total, of whom 88 had lung cancer, 31 had pneumonia, and 41 were control subjects. Among the 88 patients with lung cancer, 64 were willing to participate in follow-up chemotherapy-related studies and meet the inclusion criteria. The serum GDF15 concentration in 288 samples (31 cases, pneumonia group samples; 41 cases, control samples; 88 cases, lung cancer group samples; 64 cases, after 1 chemotherapy cycle; and 64 cases, after 2 chemotherapy cycles) with advanced lung cancer were detected by ELISA. The possible correlations between serum GDF15 level and sex, age, height, weight, body mass index, smoking history, diabetes status, and laboratory findings (hemoglobin, prealbumin, and lactate dehydrogenase) were analyzed using parametric and nonparametric tests. Thereafter, the sensitivity of GDF15 in diagnosing lung cancer was calculated. The serum levels of GDF15, carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and cytokeratin 19 fragment (CYFRA) 21-1 were determined in 64 patients with lung cancer, before and after chemotherapy reception. For the evaluation of the efficacy of chemotherapy, receiver operating characteristic curves were plotted.
    FINDINGS: Serum GDF15 concentration at baseline was significantly higher in the lung cancer group than were those in the pneumonia and control groups (both, P < 0.001). An increased expression of serum GDF15 was significantly correlated with diabetes, anemia, and clinical stage (tumor size, nodal involvement, and presence/absence of metastasis). After 2 cycles of chemotherapy among the 64 patients who received it, serum GDF15 concentrations were significantly different from baseline in those who had progressive disease (P = 0.003), stable disease (P < 0.001), or partial response (P = 0.039). The AUC of GDF15 was greater than those of CEA, NSE, and CYFRA 21-1 (0.851 vs 0.630, 0.720, and 0.654, respectively).
    IMPLICATIONS: GDF15 is complementary to CEA, NSE, and CYFRA 21-1 in diagnosing lung cancer and, when used in combination, it could be of great diagnostic value and may facilitate correct predictions of the efficacy of chemotherapy. Therefore, serum GDF15 concentration is valuable in lung cancer diagnosis and in the evaluation of the efficacy of chemotherapy.
    Keywords:  chemotherapy response; diagnosis; growth differentiation factor 15; lung cancer
    DOI:  https://doi.org/10.1016/j.clinthera.2021.02.001