bims-meluca Biomed News
on Metabolism of non-small cell lung carcinoma
Issue of 2021‒05‒02
nine papers selected by
Cristina Muñoz Pinedo
L’Institut d’Investigació Biomèdica de Bellvitge


  1. Mol Cell. 2021 Apr 21. pii: S1097-2765(21)00232-X. [Epub ahead of print]
      Aberrant energy status contributes to multiple metabolic diseases, including obesity, diabetes, and cancer, but the underlying mechanism remains elusive. Here, we report that ketogenic-diet-induced changes in energy status enhance the efficacy of anti-CTLA-4 immunotherapy by decreasing PD-L1 protein levels and increasing expression of type-I interferon (IFN) and antigen presentation genes. Mechanistically, energy deprivation activates AMP-activated protein kinase (AMPK), which in turn, phosphorylates PD-L1 on Ser283, thereby disrupting its interaction with CMTM4 and subsequently triggering PD-L1 degradation. In addition, AMPK phosphorylates EZH2, which disrupts PRC2 function, leading to enhanced IFNs and antigen presentation gene expression. Through these mechanisms, AMPK agonists or ketogenic diets enhance the efficacy of anti-CTLA-4 immunotherapy and improve the overall survival rate in syngeneic mouse tumor models. Our findings reveal a pivotal role for AMPK in regulating the immune response to immune-checkpoint blockade and advocate for combining ketogenic diets or AMPK agonists with anti-CTLA4 immunotherapy to combat cancer.
    Keywords:  AMPK; CMTM4; CTLA-4; EZH2; PD-L1; energy stress; glucose; immune checkpoint; ketogenic diet; phosphorylation
    DOI:  https://doi.org/10.1016/j.molcel.2021.03.037
  2. Theranostics. 2021 ;11(12): 5650-5674
      Rationale: Ferroptosis, a newly identified form of regulated cell death, can be induced following the inhibition of cystine-glutamate antiporter system XC - because of the impaired uptake of cystine. However, the outcome following the accumulation of endogenous glutamate in lung adenocarcinoma (LUAD) has not yet been determined. Yes-associated protein (YAP) is sustained by the hexosamine biosynthesis pathway (HBP)-dependent O-linked beta-N-acetylglucosaminylation (O-GlcNAcylation), and glutamine-fructose-6-phosphate transaminase (GFPT1), the rate-limiting enzyme of the HBP, can be phosphorylated and inhibited by adenylyl cyclase (ADCY)-mediated activation of protein kinase A (PKA). However, whether accumulated endogenous glutamate determines ferroptosis sensitivity by influencing the ADCY/PKA/HBP/YAP axis in LUAD cells is not understood. Methods: Cell viability, cell death and the generation of lipid reactive oxygen species (ROS) and malondialdehyde (MDA) were measured to evaluate the responses to the induction of ferroptosis following the inhibition of system XC -. Tandem mass tags (TMTs) were employed to explore potential factors critical for the ferroptosis sensitivity of LUAD cells. Immunoblotting (IB) and quantitative RT-PCR (qPCR) were used to analyze protein and mRNA expression. Co-immunoprecipitation (co-IP) assays were performed to identify protein-protein interactions and posttranslational modifications. Metabolite levels were measured using the appropriate kits. Transcriptional regulation was evaluated using a luciferase reporter assay, chromatin immunoprecipitation (ChIP), and electrophoretic mobility shift assay (EMSA). Drug administration and limiting dilution cell transplantation were performed with cell-derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models. The associations among clinical outcome, drug efficacy and ADCY10 expression were determined based on data from patients who underwent curative surgery and evaluated with patient-derived primary LUAD cells and tissues. Results: The accumulation of endogenous glutamate following system XC - inhibition has been shown to determine ferroptosis sensitivity by suppressing YAP in LUAD cells. YAP O-GlcNAcylation and expression cannot be sustained in LUAD cells upon impairment of GFPT1. Thus, Hippo pathway-like phosphorylation and ubiquitination of YAP are enhanced. ADCY10 acts as a key downstream target and diversifies the effects of glutamate on the PKA-dependent suppression of GFPT1. We also discovered that the protumorigenic and proferroptotic effects of ADCY10 are mediated separately. Advanced-stage LUADs with high ADCY10 expression are sensitive to ferroptosis. Moreover, LUAD cells with acquired therapy resistance are also prone to higher ADCY10 expression and are more likely to respond to ferroptosis. Finally, a varying degree of secondary labile iron increase is caused by the failure to sustain YAP-stimulated transcriptional compensation for ferritin at later stages further explains why ferroptosis sensitivity varies among LUAD cells. Conclusions: Endogenous glutamate is critical for ferroptosis sensitivity following the inhibition of system XC - in LUAD cells, and ferroptosis-based treatment is a good choice for LUAD patients with later-stage and/or therapy-resistant tumors.
    Keywords:  Ferritin; GFPT1; HBP-dependent O-GlcNAcylation; Hippo pathway; NCOA4; XBP1 splicing
    DOI:  https://doi.org/10.7150/thno.55482
  3. Cancers (Basel). 2021 Apr 14. pii: 1885. [Epub ahead of print]13(8):
      Artesunate is the most common treatment for malaria throughout the world. Artesunate has anticancer activity likely through the induction of reactive oxygen species, the same mechanism of action utilized in Plasmodium falciparum infections. Components of the kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway, which regulates cellular response to oxidative stress, are mutated in approximately 30% of non-small-cell lung cancers (NSCLC); therefore, we tested the hypothesis that KEAP1 is required for artesunate sensitivity in NSCLC. Dose response assays identified A549 cells, which have a G333C-inactivating mutation in KEAP1, as resistant to artesunate, with an IC50 of 23.6 µM, while H1299 and H1563 cells were sensitive to artesunate, with a 10-fold lower IC50. Knockdown of KEAP1 through siRNA caused increased resistance to artesunate in H1299 cells. Alternatively, the pharmacological inhibition of NRF2, which is activated downstream of KEAP1 loss, by ML385 partially restored sensitivity of A549 cells to artesunate, and the combination of artesunate and ML385 was synergistic in both A549 and H1299 cells. These findings demonstrate that KEAP1 is required for the anticancer activity of artesunate and support the further development of NRF2 inhibitors to target patients with mutations in the KEAP1/NRF2 pathway.
    Keywords:  KEAP1; NRF2; NSCLC; artesunate
    DOI:  https://doi.org/10.3390/cancers13081885
  4. Oncogene. 2021 Apr 30.
      Lung cancer is the leading cause of cancer mortality worldwide and KRAS is the most commonly mutated gene in lung adenocarcinoma (LUAD). The 78-kDa glucose-regulated protein GRP78/BiP is a key endoplasmic reticulum chaperone protein and a major pro-survival effector of the unfolded protein response (UPR). Analysis of the Cancer Genome Atlas database and immunostain of patient tissues revealed that compared to normal lung, GRP78 expression is generally elevated in human lung cancers, including tumors bearing the KRASG12D mutation. To test the requirement of GRP78 in human lung oncogenesis, we generated mouse models containing floxed Grp78 and Kras Lox-Stop-Lox G12D (KrasLSL-G12D) alleles. Simultaneous activation of the KrasG12D allele and knockout of the Grp78 alleles were achieved in the whole lung or selectively in lung alveolar epithelial type 2 cells known to be precursors for adenomas that progress to LUAD. Here we report that GRP78 haploinsufficiency is sufficient to suppress KrasG12D-mediated lung tumor progression and prolong survival. Furthermore, GRP78 knockdown in human lung cancer cell line A427 (KrasG12D/+) leads to activation of UPR and apoptotic markers and loss of cell viability. Our studies provide evidence that targeting GRP78 represents a novel therapeutic approach to suppress mutant KRAS-mediated lung tumorigenesis.
    DOI:  https://doi.org/10.1038/s41388-021-01791-9
  5. Mol Cancer Res. 2021 Apr 30. pii: molcanres.0633.2020. [Epub ahead of print]
      Pancreatic cancer is characterized by aberrant activity of oncogenic KRAS, which is mutated in 90% of pancreatic adenocarcinomas. Since KRAS itself is a challenging therapeutic target, we focused on understanding key signaling pathways driven by KRAS as a way to reveal dependencies that are amenable to therapeutic intervention. Analyses in primary human pancreatic cancers and model systems revealed that the receptor for the cytokine leukemia inhibitory factor (LIF) is down-regulated by mutant KRAS. Furthermore, down-regulation of the LIF receptor (LIFR) is necessary for KRAS-mediated neoplastic transformation. We found LIFR exerts inhibitory effects on KRAS-mediated transformation by inhibiting expression of the glucose transporter GLUT1, a key mediator of the enhanced glycolysis found in KRAS-driven malignancies. Decreased LIFR expression leads to increased GLUT1 as well as increases in glycolysis and mitochondrial respiration. The repression of GLUT1 by LIFR is mediated by the transcription factor STAT3, indicating a tumor suppressive role for STAT3 within cancer cells with mutated KRAS. Finally, reflecting a clinically important tumor suppressive role of LIFR, decreased LIFR expression correlates with shorter survival in pancreatic cancer patients with mutated KRAS. Similar findings were found in non-small cell lung cancers driven by mutated KRAS, suggesting that silencing LIFR is a generalized mechanism of KRAS-mediated cellular transformation. These results indicate that the LIFR/STAT3 pathway may mediate either tumor promoting or tumor suppressive signaling pathways depending on the genetic background of tumor cells, and may play diverse roles within other cells in the tumor microenvironment. Implications: Mutant KRAS drives downregulation of the receptor for leukemia inhibitory factor, thereby allowing an increase in expression of the glucose transporter GLUT1 and increases in glycolysis and mitochondrial respiration.
    DOI:  https://doi.org/10.1158/1541-7786.MCR-20-0633
  6. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Apr 25. 38(2): 399-404
      Because of the unobvious early symptoms and low 5-year survival rate, the early diagnosis and treatment is of great significance for patients with non-small cell lung cancer. Glucose transporter-1 is the most widely distributed glucose transporters in various tissue cells in the human body, whose expression in non-small cell lung cancer is closely related to the histological types, lymph node metastasis, degree of differentiation, progression and prognosis. 18F-FDG PET/CT imaging, a molecular imaging diagnostic method, is based on the characteristics of glucose metabolism in malignant tumors, which has been widely applied in the cancer diagnosis, stage division, evaluation of therapeutic effects and prognosis evaluation. Glucose transporter-1 is regulated and influenced by many factors, and it is closely related to 18F-FDG PET/CT imaging. This article briefly reviews the progress in the clinical application and correlation between glucose transporter-1 and 18F-FDG PET/CT imaging for non-small cell lung cancer, in order to improve the diagnosis and treatment of lung cancer.
    Keywords:  18F-fluorodeoxyglucose; glucose metabolism; glucose transporter-1; non-small cell lung cancer; positron emission tomography/computed tomography
    DOI:  https://doi.org/10.7507/1001-5515.202010004
  7. Cancers (Basel). 2021 Apr 05. pii: 1716. [Epub ahead of print]13(7):
      MicroRNAs (miRNAs) are short-strand non-coding RNAs that are responsible for post-transcriptional regulation of many biological processes. Their differential expression is important in supporting tumorigenesis by causing dysregulation in normal biological functions including cell proliferation, apoptosis, metastasis and invasion and cellular metabolism. Cellular metabolic processes are a tightly regulated mechanism. However, cancer cells have adapted features to circumvent these regulations, recognizing metabolic reprogramming as an important hallmark of cancer. The miRNA expression profile may differ between localized lung cancers, advanced lung cancers and solid tumors, which lead to a varying extent of metabolic deregulation. Emerging evidence has shown the relationship between the differential expression of miRNAs with lung cancer metabolic reprogramming in perpetuating tumorigenesis. This review provides an insight into the role of different miRNAs in lung cancer metabolic reprogramming by targeting key enzymes, transporter proteins or regulatory components alongside metabolic signaling pathways. These discussions would allow a deeper understanding of the importance of miRNAs in tumor progression therefore providing new avenues for diagnostic, therapeutic and disease management applications.
    Keywords:  lung cancer; metabolic reprogramming; metabolism; miRNAs
    DOI:  https://doi.org/10.3390/cancers13071716
  8. J Transl Med. 2021 04 26. 19(1): 170
      BACKGROUND: Lactate dehydrogenase A (LDHA) is overexpressed and associated with poor prognosis in many kinds of cancer. In the current study, we evaluated the prognostic value of LDHA expression in non-small cell lung cancer (NSCLC), and tested whether LDHA inhibition might improve radiotherapy efficacy in NSCLC.METHODS: LDHA expression was investigated in NSCLC patients, using online database and further verified by immunohistochemistry. The prognostic value of LDHA was evaluated using Kaplan-Meier plotter database. In vitro, two NSCLC cell lines were pretreated with oxamate, an inhibitor of LDHA, and colony formation method was performed to determine cellular radiosensitivity. Comet assay was used to detect DNA damage after irradiation. Flow cytometry was applied to test cell cycle progression and apoptosis, and monodansylcadaverine (MDC) staining was used to examine cell autophagy.
    RESULTS: Both mRNA and protein levels of LDHA expression were up-regulated in NSCLC tissues. High LDHA expression was a poor prognostic factor and associated with radioresistance in NSCLC patients. LDHA inhibition by oxamate remarkably increased radiosensitivity in both A549 and H1975 cancer cells, and enhanced ionizing radiation (IR)-induced apoptosis and autophagy, accompanied by cell cycle distribution alternations. Furthermore, LDHA inhibition induced reactive oxygen species (ROS) accumulation and cellular ATP depletion, which might increase DNA injury and hinder DNA repair activity.
    CONCLUSIONS: Our study suggests that inhibition of LDHA may be a potential strategy to improve radiotherapy efficacy in NSCLC patients, which needs to be further tested by clinical trials.
    Keywords:  Apoptosis; DNA repair; LDHA; NSCLC; ROS; Radiosensitivity
    DOI:  https://doi.org/10.1186/s12967-021-02825-2
  9. Neoplasma. 2021 Apr 28. pii: 210103N3. [Epub ahead of print]
      Targeting metabolomic pathways is a promising strategy for cancer treatment. Alterations in the metabolomic state have also an epigenetic impact making the metabolomic studies even more interesting. We explored metabolomic changes in blood plasma of patients with primary and secondary lung cancer and tried to explore their origin. We also applied a discrimination algorithm on the data. In the study, blood samples from 132 patients with primary lung cancer, 47 with secondary lung cancer, and 77 subjectively healthy subjects without any cancer history were used. The samples were measured by NMR spectroscopy. PCA and PLSDA analyzes did not distinguish between patients with primary and secondary lung tumors. Accordingly, no significantly changed levels of plasmatic metabolites were found between these groups. When comparing with healthy controls, significantly increased glucose, citrate, acetate, 3-hydroxybutyrate, and creatinine balanced with decreased pyruvate, lactate, alanine, tyrosine, and tryptophan were found as a common feature of both groups. Metabolomic analysis of blood plasma showed considerable proximity of patients with primary and secondary lung cancer. The changes observed can be partially explained as cancer-derived and also as changes showing ischemic nature. Random Forrest discrimination based on the relative concentration of metabolites in blood plasma performed very promising with AUC of 0.95 against controls; however noticeable parts of differencing metabolites are overlapping with those observed after ischemic injury in other studies.
    DOI:  https://doi.org/10.4149/neo_2021_210103N3