Am J Cancer Res. 2023 ;13(4): 1363-1376
Epstein-Barr virus (EBV) can infect the majority of the human population with no obvious symptoms and is associated with tumor development, although the mechanism is still largely unknown. In this study, we investigated the role and the underlying mechanism of EBV nuclear antigen 2 (EBNA2) in tumorigenesis. We found that the infection of EBNA2 in human B lymphocytes (HBL) upregulated the expression of activating transcription factor 4 (ATF4). Furthermore, we used gene expression or knockdown approach to demonstrate the effect of EBNA2 on redox balance, mitochondrial function, lipid metabolism, and cell proliferation in both HBL and EBV-transformed lymphocyte cell line (LCL). More importantly, we applied in vivo xenograft tumor mouse model to explore the contribution of EBNA2 and ATF4 in tumor growth and mouse survival. Mechanistically, we revealed that EBNA2 exposure caused persistent expression of ATF4 via EBNA2-mediated epigenetic changes, which increased the binding ability of upstream stimulating factor 1 (USF1) on the ATF4 promoter. ATF4 activation in HBL cells modulated the expression of lipid metabolism-related genes and potentiated fatty acid oxidation and lipogenesis. Conversely, knockdown of either EBNA2 or ATF4 in LCL suppressed lipid metabolism, modulated redox balance and mitochondrial function, as well as inhibited tumor cell proliferation. In consistent with these findings from in vitro study, an in vivo xenograft model confirmed that knockdown of either EBNA2 or ATF4 inhibited the gene expression of SREBP1, ChREBP, and FAS, as well as suppressed tumor growth and prolonged animal survival. Collectively, this study demonstrates that EBNA2 mediates tumorigenesis through ATF4 activation and the modulation of lipid metabolism; therefore, our findings provide a novel avenue for the clinical treatment of EBV-mediated cancer.
Keywords: ATF4 and USF1; EBNA2; EBV; lipid metabolism