bims-mepmim Biomed News
on Metabolites in pathological microenvironments and immunometabolism
Issue of 2022‒05‒22
34 papers selected by
Erika Mariana Palmieri
NIH/NCI Laboratory of Cancer ImmunoMetabolism


  1. Nat Commun. 2022 May 16. 13(1): 2699
      Metastasis is the most common cause of death in cancer patients. Canonical drugs target mainly the proliferative capacity of cancer cells, which leaves slow-proliferating, persistent cancer cells unaffected. Metabolic determinants that contribute to growth-independent functions are still poorly understood. Here we show that antifolate treatment results in an uncoupled and autarkic mitochondrial one-carbon (1C) metabolism during cytosolic 1C metabolism impairment. Interestingly, antifolate dependent growth-arrest does not correlate with decreased migration capacity. Therefore, using methotrexate as a tool compound allows us to disentangle proliferation and migration to profile the metabolic phenotype of migrating cells. We observe that increased serine de novo synthesis (SSP) supports mitochondrial serine catabolism and inhibition of SSP using the competitive PHGDH-inhibitor BI-4916 reduces cancer cell migration. Furthermore, we show that sole inhibition of mitochondrial serine catabolism does not affect primary breast tumor growth but strongly inhibits pulmonary metastasis. We conclude that mitochondrial 1C metabolism, despite being dispensable for proliferative capacities, confers an advantage to cancer cells by supporting their motility potential.
    DOI:  https://doi.org/10.1038/s41467-022-30363-y
  2. Nat Commun. 2022 May 16. 13(1): 2698
      Purine nucleotides are necessary for various biological processes related to cell proliferation. Despite their importance in DNA and RNA synthesis, cellular signaling, and energy-dependent reactions, the impact of changes in cellular purine levels on cell physiology remains poorly understood. Here, we find that purine depletion stimulates cell migration, despite effective reduction in cell proliferation. Blocking purine synthesis triggers a shunt of glycolytic carbon into the serine synthesis pathway, which is required for the induction of cell migration upon purine depletion. The stimulation of cell migration upon a reduction in intracellular purines required one-carbon metabolism downstream of de novo serine synthesis. Decreased purine abundance and the subsequent increase in serine synthesis triggers an epithelial-mesenchymal transition (EMT) and, in cancer models, promotes metastatic colonization. Thus, reducing the available pool of intracellular purines re-routes metabolic flux from glycolysis into de novo serine synthesis, a metabolic change that stimulates a program of cell migration.
    DOI:  https://doi.org/10.1038/s41467-022-30362-z
  3. Front Cell Dev Biol. 2022 ;10 881297
      Liver kinase B1 (LKB1) is a multitasking tumor suppressor kinase that is implicated in multiple malignancies such as lung, gastrointestinal, pancreatic, and breast. LKB1 was first identified as the gene responsible for Peutz-Jeghers syndrome (PJS) characterized by hamartomatous polyps and oral mucotaneous pigmentation. LKB1 functions to activate AMP-activated protein kinase (AMPK) during energy stress to shift metabolic processes from active anabolic pathways to active catabolic pathways to generate ATP. Genetic loss or inactivation of LKB1 promotes metabolic reprogramming and metabolic adaptations of cancer cells that fuel increased growth and division rates. As a result, LKB1 loss is associated with increased aggressiveness and treatment options for patients with LKB1 mutant tumors are limited. Recently, there has been new insights into the role LKB1 has on metabolic regulation and the identification of potential vulnerabilities in LKB1 mutant tumors. In this review, we discuss the tumor suppressive role of LKB1 and the impact LKB1 loss has on metabolic reprograming in cancer cells, with a focus on lung cancer. We also discuss potential therapeutic avenues to treat malignancies associated with LKB1 loss by targeting aberrant metabolic pathways associated with LKB1 loss.
    Keywords:  AMPK; LKB1; cancer metabolism; glycolysis; lung cancer; mTOR; tumor suppressor
    DOI:  https://doi.org/10.3389/fcell.2022.881297
  4. Pharmacol Ther. 2022 May 12. pii: S0163-7258(22)00102-4. [Epub ahead of print] 108208
      As the first line of defence in the lung, alveolar macrophage contributes to maintaining lung immune homoeostasis. Characterized by the heterogeneity and plasticity, macrophages polarize into two pro-inflammatory and anti-inflammatory phenotypes regarding the biological and pathological environment. In the past decade, numerous studies have revolutionized the relationship between cellular metabolism and macrophage functions. Mitochondria dysfunctions, which results in altered cellular metabolic profile, were observed in the alveolar macrophages during chronic lung diseases. In addition, alveolar macrophages adapt metabolic reprogramming to produce an immune response against the pathogens. Here, we outline the role of mitochondria in the development of macrophage phenotypes and functions and highlight the mitochondrial dysfunction in the setting of chronic lung diseases. Lastly, we emphasize the therapeutic relevance of targeting metabolic pathways in alveolar macrophages, which may shed light on developing novel strategies against chronic lung diseases.
    Keywords:  Chronic lung disease; Macrophage; Macrophage polarization; Metabolic reprogramming; Mitochondria metabolism
    DOI:  https://doi.org/10.1016/j.pharmthera.2022.108208
  5. Cell Oncol (Dordr). 2022 May 19.
      Macrophages are the most abundant and one of the most critical cells of tumor immunity. They provide a bridge between innate and adaptive immunity through releasing cytokines into the tumor microenvironment (TME). A number of interleukin (IL) cytokine family members is involved in shaping the final phenotype of macrophages toward either a classically-activated pro-inflammatory M1 state with anti-tumor activity or an alternatively-activated anti-inflammatory M2 state with pro-tumor activity. Shaping TME macrophages toward the M1 phenotype or recovering this phenotypic state may offer a promising therapeutic approach in patients with cancer. Here, we focus on the impact of macrophage-polarizing ILs on immune cells and IL-mediated cellular cross-interactions within the TME. The key aim of this review is to define therapeutic schedules for addressing ILs in cancer immunotherapy based on their multi-directional impacts in such a milieu. Gathering more knowledge on this area is also important for defining adverse effects related to cytokine therapy and addressing them for reinforcing the efficacy of immunotherapy against cancer.
    Keywords:  Cancer; Immunotherapy; Interleukin (IL); Macrophage; Polarity; Tumor microenvironment (TME)
    DOI:  https://doi.org/10.1007/s13402-022-00667-8
  6. Biologics. 2022 ;16 35-45
      Cancer immunotherapy is an effective treatment option against cancer. One of the approaches of cancer immunotherapy is the modification of T cell-based anti-tumor immune responses. T-cells, a type of adaptive immune response cells responsible for cell-mediated immunity, have long been recognized as key regulators of immune-mediated anti-tumor immunity. T-cell activities have been reported to be suppressed or enhanced by changes in cell metabolism. Moreover, metabolic reprogramming during activation of T cells is required for the development of distinct differentiation profiles of these cells, which may allow the development of long-term cell-mediated anti-tumor immunity. However, T cells have been shown to undergo metabolic exhaustion in tumor microenvironment (TME) as it poses several obstacles to their function. Applications of several mechanistic solutions to improve the efficacy of T cell-based therapies including chimeric antigen receptor (CAR) T cell therapy are yet to be determined. Modifying the metabolic properties of these cells and employing them in cancer immunotherapy is a potential strategy for improving their anti-tumor activity and therapeutic efficacy. To give an insight, in this review paper, we endeavoured to cover metabolic reprogramming in cancer and T cells, signalling mechanisms involved in immuno-metabolic regulation, the effects of the TME on T cell metabolic fitness, and targeting metabolic reprogramming of T cells for an enhanced anti-tumor response.
    Keywords:  T-cell; cancer; immunotherapy; metabolic reprogramming
    DOI:  https://doi.org/10.2147/BTT.S365490
  7. Commun Biol. 2022 May 16. 5(1): 467
      Mitochondrial dysfunction is a key driver of diabetes and other metabolic diseases. Mitochondrial redox state is highly impactful to metabolic function but the mechanism driving this is unclear. We generated a transgenic mouse which overexpressed the redox enzyme Thioredoxin Reductase 2 (TrxR2), the rate limiting enzyme in the mitochondrial thioredoxin system. We found augmentation of TrxR2 to enhance metabolism in mice under a normal diet and to increase resistance to high-fat diet induced metabolic dysfunction by both increasing glucose tolerance and decreasing fat deposition. We show this to be caused by increased mitochondrial function which is driven at least in part by enhancements to the tricarboxylic acid cycle and electron transport chain function. Our findings demonstrate a role for TrxR2 and mitochondrial thioredoxin as metabolic regulators and show a critical role for redox enzymes in controlling functionality of key mitochondrial metabolic systems.
    DOI:  https://doi.org/10.1038/s42003-022-03405-w
  8. Autoimmun Rev. 2022 May 17. pii: S1568-9972(22)00086-6. [Epub ahead of print] 103116
      B cells are major players in immune responses being the source of protective antibodies and antigen presenting cells. When self-tolerance fails, auto reactive B cells produce autoantibodies and pro-inflammatory cytokines leading to the development of autoimmune diseases. Many recent studies have assessed importance of metabolic pathways in B cells, demonstrating their role in controlling autoimmunity and maintaining immune homeostasis. Alterations in B cell functions in autoimmune diseases are closely associated with abnormal metabolic shifts, allowing auto reactive B cells to escape tolerogenic checkpoints. Understanding the metabolic changes in B cells, opens up new possibilities for targeting metabolic pathways and manipulating metabolic avenues as a therapeutic strategy for the treatment of autoimmune diseases.
    Keywords:  Autoimmune diseases; B cell metabolism
    DOI:  https://doi.org/10.1016/j.autrev.2022.103116
  9. ACS Appl Mater Interfaces. 2022 May 17.
      Lactate accumulation in the solid tumor is highly relevant to the immunosuppressive tumor microenvironment (TME). Targeting lactate metabolism significantly enhances the efficacy of immunotherapy. However, lactate depletion by lactate oxidase (LOX) consumes oxygen and results in the aggravated hypoxia situation, counteracting the benefit of lactate depletion. Beyond the TME regulation, it is necessary to initiate the effective immunity cycle for therapeutic purposes. In this fashion, dual close-loop of catalyzed lactate depletion and immune response by a rational material design are established to address this issue. Here, we constructed PEG-modified mesoporous polydopamine nanoparticles with Cu2+ chelation and LOX encapsulation (denoted as mCuLP). After mCuLP nanosystems targeting into the tumor sites, released LOX consumes lactate to H2O2. Subsequently, the produced H2O2 is further catalyzed by Cu2+-chelated mPDA to produce oxygen, supplying the oxygen source for the closed-loop of lactate depletion. Meanwhile, the mild PTT caused by the photothermal mPDA induces ICD of tumor cells to promote DC maturation and then T lymphocyte infiltration to kill tumor cells, which forms another closed-loop for cancer immunity. Therefore, this dual closed-loop strategy of mCuLP nanosystems effectively inhibits tumor growth, providing a promising treatment modality to cancer immunotherapy.
    Keywords:  closed-loop; immunosuppressive tumor microenvironment; lactate; mesoporous polydopamine; photothermal immunotherapy
    DOI:  https://doi.org/10.1021/acsami.2c07254
  10. JCI Insight. 2022 May 17. pii: e155338. [Epub ahead of print]
      Macrophages play a crucial role in the inflammatory response to the human stomach pathogen Helicobacter pylori, which infects half of the world's population and causes gastric cancer. Recent studies have highlighted the importance of macrophage immunometabolism in their activation state and function. We have demonstrated that the cysteine-producing enzyme, cystathionine g-lyase (CTH), is upregulated in humans and mice with H. pylori infection. Here we show that induction of CTH in macrophages by H. pylori promotes persistent inflammation. Cth-/- mice have reduced macrophage and T-cell activation in H. pylori-infected tissues, an altered metabolome, and decreased enrichment of immune-associated gene networks, culminating in decreased H. pylori-induced-gastritis. CTH is downstream of the proposed anti-inflammatory molecule, S-adenosylmethionine (SAM). While Cth-/- mice exhibit gastric SAM accumulation, WT mice treated with SAM did not display protection against H. pylori-induced inflammation. Instead, we demonstrate that Cth-deficient macrophages exhibit alterations in the proteome, decreased NF-kB activation, diminished expression of macrophage activation markers, and impaired oxidative phosphorylation and glycolysis. Thus, through altering cellular respiration, CTH is a key enhancer of macrophage activation contributing to a pathogenic inflammatory response that is the universal precursor for the development of H. pylori-induced gastric disease.
    Keywords:  Amino acid metabolism; Gastroenterology; Immunology; Innate immunity; Macrophages
    DOI:  https://doi.org/10.1172/jci.insight.155338
  11. Blood Adv. 2022 May 17. pii: bloodadvances.2022007034. [Epub ahead of print]
      Acquired T-cell dysfunction is characteristic of CLL and is associated with reduced efficacy of T-cell based therapies. A recently described feature of dysfunctional CLL-derived CD8 T cells is reduced metabolic plasticity. To what extend CD4 T cells are affected, and if CD4 T-cell metabolism and function can be restored upon clinical depletion of CLL cells is currently unknown. Here we address these unresolved issues by a comprehensive phenotypic, metabolic, transcriptomic and functional analysis of CD4 T cells of untreated CLL patients, and by analyzing the effects of venetoclax + obinutuzumab on the CD4 population. Resting CD4 T cells derived from CLL patients expressed lower levels of GLUT-1, displayed deteriorated oxidative phosphorylation (OXPHOS) and overall reduced mitochondrial fitness. Upon T-cell stimulation, CLL T cells were unable to initiate glycolysis. Transcriptome analysis revealed that depletion of CLL cells in vitro resulted in upregulation of OXPHOS and glycolysis pathways and restored T-cell function in vitro. Analysis of CD4 T cells from CLL patients prior and after venetoclax + obinutuzumab treatment, which led to effective clearance of CLL in blood and bone marrow, revealed recovery of T-cell activation and restoration of the switch to glycolysis, as well as improved T-cell proliferation. Collectively these data demonstrate that CLL cells impose metabolic restrictions on CD4 T cells which lead to reduced CD4 T-cell functionality. This trial is registered in the Netherlands Trial Registry ID: NTR6043.
    DOI:  https://doi.org/10.1182/bloodadvances.2022007034
  12. Front Cell Dev Biol. 2022 ;10 867341
      The endoplasmic reticulum (ER) is a large continuous membranous organelle that plays a central role as the hub of protein and lipid synthesis while the mitochondria is the principal location for energy production. T cells are an immune subset exhibiting robust dependence on ER and mitochondrial function based on the need for protein synthesis and secretion and metabolic dexterity associated with foreign antigen recognition and cytotoxic effector response. Intimate connections exist at mitochondrial-ER contact sites (MERCs) that serve as the structural and biochemical platforms for cellular metabolic homeostasis through regulation of fission and fusion as well as glucose, Ca2+, and lipid exchange. Work in the tumor immunotherapy field indicates that the complex interplay of nutrient deprivation and tumor antigen stimulation in the tumor microenvironment places stress on the ER and mitochondria, causing dysfunction in organellar structure and loss of metabolic homeostasis. Here, we assess prior literature that establishes how the structural interface of these two organelles is impacted by the stress of solid tumors along with recent advances in the manipulation of organelle homeostasis at MERCs in T cells. These findings provide strong evidence for increased tumor immunity using unique therapeutic avenues that recharge cellular metabolic homeostasis in T cells.
    Keywords:  ER stress; MERCs; T cell; cancer immunotherapy; endoplasmic recticulum (ER); metabolism; tumor microenvironment
    DOI:  https://doi.org/10.3389/fcell.2022.867341
  13. Nature. 2022 May 18.
      Imbalances in lipid homeostasis can have deleterious effects on health1,2. Yet how cells sense metabolic demand due to lipid depletion and respond by increasing nutrient absorption remains unclear. Here we describe a mechanism for intracellular lipid surveillance in Caenorhabditis elegans that involves transcriptional inactivation of the nuclear hormone receptor NHR-49 through its cytosolic sequestration to endocytic vesicles via geranylgeranyl conjugation to the small G protein RAB-11.1. Defective de novo isoprenoid synthesis caused by lipid depletion limits RAB-11.1 geranylgeranylation, which promotes nuclear translocation of NHR-49 and activation of rab-11.2 transcription to enhance transporter residency at the plasma membrane. Thus, we identify a critical lipid sensed by the cell, its conjugated G protein, and the nuclear receptor whose dynamic interactions enable cells to sense metabolic demand due to lipid depletion and respond by increasing nutrient absorption and lipid metabolism.
    DOI:  https://doi.org/10.1038/s41586-022-04729-7
  14. Immunol Lett. 2022 May 11. pii: S0165-2478(22)00054-2. [Epub ahead of print]
      Follicular helper T (TFH) cells are expanded in systemic lupus erythematosus (SLE), where they are required for production of high affinity autoantibodies. A better understanding of the mechanisms that regulate the differentiation of TFH cells is critical. Naïve T cells from lupus-prone B6.NZM2410.Sle1.Sle2.Sle3 (TC) mice showed an intrinsic higher capacity to differentiate into TFH cells. Metabolic reprogramming is a vital regulatory mechanism for T cell differentiation, but how metabolic pathways contribute to TFH cell expansion in SLE remains elusive. Here we show that glycolysis, mTOR signaling, FAO, and the activity of complex V of the electron transport chain support TFH lineage commitment. Blocking complex I uniquely decreased the expansion of TFH cells from lupus-prone mice, and inhibition of some pathways had a greater effect in lupus-prone than control TFH cells. However, blocking glutaminolysis, complex III and ADP/ATP translocase did not affect TFH cell expansion. Together, our results identified novel intrinsic metabolic requirements for TFH cell differentiation, and further defined the differential metabolic pathways that support the expansion of TFH cells in lupus-prone mice. Together, our data indicates the crucial but distinct roles for metabolic pathways in TFH cell differentiation and provide a comprehensive experimental basis for fully understanding the precise roles of distant metabolic signaling in regulating the TFH cell differentiation.
    Keywords:  Follicular helper T cells; Metabolic pathways; SLE
    DOI:  https://doi.org/10.1016/j.imlet.2022.03.008
  15. Biochem Pharmacol. 2022 May 11. pii: S0006-2952(22)00168-X. [Epub ahead of print]201 115074
      The liver controls the systemic exposure of amino acids entering via the gastro-intestinal tract. For most amino acids except branched chain amino acids, hepatic uptake is very efficient. This implies that the liver orchestrates amino acid metabolism and also controls systemic amino acid exposure. Although many amino acid transporters have been identified, cloned and investigated with respect to substrate specificity, transport mechanism, and zonal distribution, which of these players are involved in hepatocellular amino acid transport remains unclear. Here, we aim to provide a review of current insight into the molecular machinery of hepatic amino acid transport. Furthermore, we place this information in a comprehensive overview of amino acid transport, signalling and metabolism.
    Keywords:  Amino acid signalling; Amino acid transport; Gluconeogenesis; Hepatocyte; Liver; Metabolic zonation; mTORC1
    DOI:  https://doi.org/10.1016/j.bcp.2022.115074
  16. Life Sci Alliance. 2022 Sep;pii: e202101317. [Epub ahead of print]5(9):
      Despite enormous efforts to improve therapeutic options, pancreatic cancer remains a fatal disease and is expected to become the second leading cause of cancer-related deaths in the next decade. Previous research identified lipid metabolic pathways to be highly enriched in pancreatic ductal adenocarcinoma (PDAC) cells. Thereby, cholesterol uptake and synthesis promotes growth advantage to and chemotherapy resistance for PDAC tumor cells. Here, we demonstrate that high-density lipoprotein (HDL)-mediated efficient cholesterol removal from cancer cells results in PDAC cell growth reduction and induction of apoptosis in vitro. This effect is driven by an HDL particle composition-dependent interaction with SR-B1 and ABCA1 on cancer cells. AAV-mediated overexpression of APOA1 and rHDL injections decreased PDAC tumor development in vivo. Interestingly, plasma samples from pancreatic-cancer patients displayed a significantly reduced APOA1-to-SAA1 ratio and a reduced cholesterol efflux capacity compared with healthy donors. We conclude that efficient, HDL-mediated cholesterol depletion represents an interesting strategy to interfere with the aggressive growth characteristics of PDAC.
    DOI:  https://doi.org/10.26508/lsa.202101317
  17. Nature. 2022 May 18.
      Cancer metastasis requires the transient activation of cellular programs enabling dissemination and seeding in distant organs1. Genetic, transcriptional and translational heterogeneity contributes to this dynamic process2,3. Metabolic heterogeneity has also been observed4, yet its role in cancer progression is less explored. Here we find that the loss of phosphoglycerate dehydrogenase (PHGDH) potentiates metastatic dissemination. Specifically, we find that heterogeneous or low PHGDH expression in primary tumours of patients with breast cancer is associated with decreased metastasis-free survival time. In mice, circulating tumour cells and early metastatic lesions are enriched with Phgdhlow cancer cells, and silencing Phgdh in primary tumours increases metastasis formation. Mechanistically, Phgdh interacts with the glycolytic enzyme phosphofructokinase, and the loss of this interaction activates the hexosamine-sialic acid pathway, which provides precursors for protein glycosylation. As a consequence, aberrant protein glycosylation occurs, including increased sialylation of integrin αvβ3, which potentiates cell migration and invasion. Inhibition of sialylation counteracts the metastatic ability of Phgdhlow cancer cells. In conclusion, although the catalytic activity of PHGDH supports cancer cell proliferation, low PHGDH protein expression non-catalytically potentiates cancer dissemination and metastasis formation. Thus, the presence of PHDGH heterogeneity in primary tumours could be considered a sign of tumour aggressiveness.
    DOI:  https://doi.org/10.1038/s41586-022-04758-2
  18. Cell Rep. 2022 May 17. pii: S2211-1247(22)00593-9. [Epub ahead of print]39(7): 110822
      The impact of Cajal-Retzius cells on the regulation of hippocampal circuits and related behaviors is unresolved. Here, we directly address this issue by impairing the glutamatergic output of Cajal-Retzius cells with the conditional ablation of vGluT2, which is their main vesicular glutamate transporter. Although two distinct conditional knockout lines do not reveal major alterations in hippocampal-layer organization and dendritic length of principal neurons or GABAergic cells, we find parallel deficits in specific hippocampal-dependent behaviors and in their putative underlying microcircuits. First, conditional knockout animals show increased innate anxiety and decreased feedforward GABAergic inhibition on dentate gyrus granule cells. Second, we observe impaired spatial memory processing, which is associated with decreased spine density and reduced AMPA/NMDA ratio of postsynaptic responses at the perforant- and entorhino-hippocampal pathways. We conclude that glutamate synaptically released by Cajal-Retzius cells is critical for the regulation of hippocampal microcircuits and specific types of behaviors.
    Keywords:  CP: Neuroscience; anxiety; development; interneuron; memory; optogenetics; spine; transporter
    DOI:  https://doi.org/10.1016/j.celrep.2022.110822
  19. Front Mol Biosci. 2022 ;9 882487
      During the past few decades, the direct analysis of metabolic intermediates in biological samples has greatly improved the understanding of metabolic processes. The most used technologies for these advances have been mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. NMR is traditionally used to elucidate molecular structures and has now been extended to the analysis of complex mixtures, as biological samples: NMR-based metabolomics. There are however other areas of small molecule biochemistry for which NMR is equally powerful. These include the quantification of metabolites (qNMR); the use of stable isotope tracers to determine the metabolic fate of drugs or nutrients, unravelling of new metabolic pathways, and flux through pathways; and metabolite-protein interactions for understanding metabolic regulation and pharmacological effects. Computational tools and resources for automating analysis of spectra and extracting meaningful biochemical information has developed in tandem and contributes to a more detailed understanding of systems biochemistry. In this review, we highlight the contribution of NMR in small molecule biochemistry, specifically in metabolic studies by reviewing the state-of-the-art methodologies of NMR spectroscopy and future directions.
    Keywords:  NMR; metabolism; metabolite-protein interactions; metabolomics; qNMR; stable isotopes
    DOI:  https://doi.org/10.3389/fmolb.2022.882487
  20. Acta Biochim Biophys Sin (Shanghai). 2022 Apr 25.
      Cartilage and subchondral bone communicate with each other through material and signal exchanges. However, direct evidence provided by experimental studies on their interactions is insufficient. In the present study, we establish a noncontact co-culture model with a transwell chamber to explore the energetic perturbations in chondrocytes influenced by osteoblasts. Our results indicate that osteoblasts induce more ATP generation in chondrocytes through an energetic shift characterized by enhanced glycolysis and impaired mitochondrial tricarboxylic acid cycle. Enhanced glycolysis is shown by an increase of secreted lactate and the upregulation of glycolytic enzymes, including glucose-6-phosphate isomerase (Gpi), liver type ATP-dependent 6-phosphofructokinase (Pfkl), fructose-bisphosphate aldolase C (Aldoc), glyceraldehyde-3-phosphate dehydrogenase (Gapdh), triosephosphate isomerase (Tpi1), and phosphoglycerate kinase 1 (Pgk1). Impaired mitochondrial tricarboxylic acid cycle is characterized by the downregulation of cytoplasmic aspartate aminotransferase (Got1) and mitochondrial citrate synthase (Cs). Osteoblasts induce the activation of Akt and P38 signaling to mediate ATP perturbations in chondrocytes. This study may deepen our understanding of the maintenance of metabolic homeostasis in the bone-cartilage unit.
    Keywords:  adenosine triphosphate; carbon metabolism; chondrocyte; co-culture; osteoblast
    DOI:  https://doi.org/10.3724/abbs.2022042
  21. Circ Res. 2022 May 16. 101161CIRCRESAHA122321050
      BACKGROUND: Cellular redox control is maintained by generation of reactive oxygen/nitrogen species balanced by activation of antioxidative pathways. Disruption of redox balance leads to oxidative stress, a central causative event in numerous diseases including heart failure. Redox control in the heart exposed to hemodynamic stress, however, remains to be fully elucidated.METHODS: Pressure overload was triggered by transverse aortic constriction in mice. Transcriptomic and metabolomic regulations were evaluated by RNA-sequencing and metabolomics, respectively. Stable isotope tracer labeling experiments were conducted to determine metabolic flux in vitro. Neonatal rat ventricular myocytes and H9c2 cells were used to examine molecular mechanisms.
    RESULTS: We show that production of cardiomyocyte NADPH, a key factor in redox regulation, is decreased in pressure overload-induced heart failure. As a consequence, the level of reduced glutathione is downregulated, a change associated with fibrosis and cardiomyopathy. We report that the pentose phosphate pathway and mitochondrial serine/glycine/folate metabolic signaling, 2 NADPH-generating pathways in the cytosol and mitochondria, respectively, are induced by transverse aortic constriction. We identify ATF4 (activating transcription factor 4) as an upstream transcription factor controlling the expression of multiple enzymes in these 2 pathways. Consistently, joint pathway analysis of transcriptomic and metabolomic data reveals that ATF4 preferably controls oxidative stress and redox-related pathways. Overexpression of ATF4 in neonatal rat ventricular myocytes increases NADPH-producing enzymes whereas silencing of ATF4 decreases their expression. Further, stable isotope tracer experiments reveal that ATF4 overexpression augments metabolic flux within these 2 pathways. In vivo, cardiomyocyte specific deletion of ATF4 exacerbates cardiomyopathy in the setting of transverse aortic constriction and accelerates heart failure development, attributable, at least in part, to an inability to increase the expression of NADPH-generating enzymes.
    CONCLUSIONS: Our findings reveal that ATF4 plays a critical role in the heart under conditions of hemodynamic stress by governing both cytosolic and mitochondrial production of NADPH.
    Keywords:  cell death; fibrosis; glycine; heart failure; metabolomics
    DOI:  https://doi.org/10.1161/CIRCRESAHA.122.321050
  22. Nat Commun. 2022 May 18. 13(1): 2748
      Toll-like receptors/Interleukin-1 receptor signaling plays an important role in high-fat diet-induced adipose tissue dysfunction contributing to obesity-associated metabolic syndromes. Here, we show an unconventional IL-1R-IRAKM-Slc25a1 signaling axis in adipocytes that reprograms lipogenesis to promote diet-induced obesity. Adipocyte-specific deficiency of IRAKM reduces high-fat diet-induced body weight gain, increases whole body energy expenditure and improves insulin resistance, associated with decreased lipid accumulation and adipocyte cell sizes. IL-1β stimulation induces the translocation of IRAKM Myddosome to mitochondria to promote de novo lipogenesis in adipocytes. Mechanistically, IRAKM interacts with and phosphorylates mitochondrial citrate carrier Slc25a1 to promote IL-1β-induced mitochondrial citrate transport to cytosol and de novo lipogenesis. Moreover, IRAKM-Slc25a1 axis mediates IL-1β induced Pgc1a acetylation to regulate thermogenic gene expression in adipocytes. IRAKM kinase-inactivation also attenuates high-fat diet-induced obesity. Taken together, our study suggests that the IL-1R-IRAKM-Slc25a1 signaling axis tightly links inflammation and adipocyte metabolism, indicating a potential therapeutic target for obesity.
    DOI:  https://doi.org/10.1038/s41467-022-30470-w
  23. Nat Commun. 2022 May 19. 13(1): 2760
      Autophagy has vasculoprotective roles, but whether and how it regulates lymphatic endothelial cells (LEC) homeostasis and lymphangiogenesis is unknown. Here, we show that genetic deficiency of autophagy in LEC impairs responses to VEGF-C and injury-driven corneal lymphangiogenesis. Autophagy loss in LEC compromises the expression of main effectors of LEC identity, like VEGFR3, affects mitochondrial dynamics and causes an accumulation of lipid droplets (LDs) in vitro and in vivo. When lipophagy is impaired, mitochondrial ATP production, fatty acid oxidation, acetyl-CoA/CoA ratio and expression of lymphangiogenic PROX1 target genes are dwindled. Enforcing mitochondria fusion by silencing dynamin-related-protein 1 (DRP1) in autophagy-deficient LEC fails to restore LDs turnover and lymphatic gene expression, whereas supplementing the fatty acid precursor acetate rescues VEGFR3 levels and signaling, and lymphangiogenesis in LEC-Atg5-/- mice. Our findings reveal that lipophagy in LEC by supporting FAO, preserves a mitochondrial-PROX1 gene expression circuit that safeguards LEC responsiveness to lymphangiogenic mediators and lymphangiogenesis.
    DOI:  https://doi.org/10.1038/s41467-022-30490-6
  24. Redox Biol. 2022 May 13. pii: S2213-2317(22)00109-4. [Epub ahead of print]53 102337
      Recent studies demonstrate that redox imbalance of NAD+/NADH and NADP+/NADPH pairs due to impaired respiration may trigger two "hidden" metabolic pathways on the crossroad between mitochondrial dysfunction, senescence, and proliferation: "β-oxidation shuttle" and "hydride transfer complex (HTC) cycle". The "β-oxidation shuttle" induces NAD+/NADH redox imbalance in mitochondria, while HTC cycle maintains the redox balance of cytosolic NAD+/NADH, increasing the redox disbalance of NADP+/NADPH. Senescence appears to depend on high cytoplasmic NADH but low NADPH, while proliferation depends on high cytoplasmic NAD+ and NADPH that are under mitochondrial control. Thus, activating or deactivating the HTC cycle can be crucial to cell fate - senescence or proliferation. These pathways are a source of enormous cataplerosis. They support the production of large amounts of NADPH and intermediates for lipid synthesis and membrane biogenesis, as well as for DNA synthesis.
    DOI:  https://doi.org/10.1016/j.redox.2022.102337
  25. Adv Exp Med Biol. 2022 ;1377 95-107
      Cholesterol is a major component of mammalian cell membranes and plays important structural and functional roles. However, excessive cholesterol accumulation is toxic to cells and constitutes the molecular basis for many diseases, especially atherosclerotic cardiovascular disease. Thus, cellular cholesterol is tightly regulated to maintain a homeostasis. Reverse cholesterol transport (RCT) is thought to be one primary pathway to eliminate excessive cholesterol from the body. The first and rate-limiting step of RCT is ATP-binding cassette (ABC) transports A1 (ABCA1)- and ABCG1-dependent cholesterol efflux. In the process, ABCA1 mediates initial transport of cellular cholesterol to apolipoprotein A-I (apoA-I) for forming nascent high-density lipoprotein (HDL) particles, and ABCG1 facilitates subsequent continued cholesterol efflux to HDL for further maturation. In this chapter, we summarize the roles of ABCA1 and ABCG1 in maintaining cellular cholesterol homoeostasis and discuss the underlying mechanisms by which they mediate cholesterol export.
    Keywords:  ABCA1; ABCG1; Atherosclerosis; Cholesterol efflux; HDL; apoA-I
    DOI:  https://doi.org/10.1007/978-981-19-1592-5_7
  26. Front Oncol. 2022 ;12 873293
      Background: Lung cancer is the second common cancer type in western countries and has a high mortality. During the development and progression of the tumor, the nutrients in its environment play a central role. The tumor cells depend crucially on glucose metabolism and uptake. Tumor cell metabolism is dominated by the Warburg effect, where tumor cells produce large amounts of lactate from pyruvate under aerobic conditions. We thus reasoned that, reducing carbohydrates in the diet might support anti-tumoral effects of current immunotherapy and additionally target tumor immune escape.Objectives: The link between reducing carbohydrates to improve current immunotherapy is not clear. We thus aimed at analyzing the effects of different glucose levels on the tumor development, progression and the anti-tumoral immune response.
    Methods: We correlated the clinical parameters of our LUAD cohort with different metabolic markers. Additionally, we performed cell culture experiments with A549 tumor cell line under different glucose levels. Lastly, we investigated the effect of low and high carbohydrate diet in an experimental murine model of lung cancer on the tumor progression and different immune subsets.
    Results: Here we found a positive correlation between the body mass index (BMI), blood glucose levels, reduced overall survival (OS) and the expression of Insulin-like growth factor-1 receptor (IGF1R) in the lung tumoral region of patients with lung adenocarcinoma (LUAD). Furthermore, increasing extracellular glucose induced IGF1R expression in A549 LUAD cells. Functional studies in a murine model of LUAD demonstrated that, glucose restricted diet resulted in decreased tumor load in vivo. This finding was associated with increased presence of lung infiltrating cytotoxic CD8+ T effector memory (TEM), tissue resident memory T (TRM) and natural killer cells as well as reduced IGFR mRNA expression, suggesting that glucose restriction regulates lung immunity in the tumor microenvironment.
    Conclusions: These results indicate that, glucose restricted diet improves lung immune responses of the host and suppresses tumor growth in experimental lung adenocarcinoma. As glucose levels in LUAD patients were negatively correlated to postoperative survival rates, glucose-restricted diet emerges as therapeutic avenue for patients with LUAD.
    Keywords:  A549; BMI; IGFR; Immunotherapy; NSCLC; glucose
    DOI:  https://doi.org/10.3389/fonc.2022.873293
  27. Oxid Med Cell Longev. 2022 ;2022 7702681
      The M2 isoform of pyruvate kinase (PKM2) is one isoform of pyruvate kinase (PK). PKM2 is expressed at high levels during embryonic development and tumor progression and is subject to complex allosteric regulation. PKM2 is a special glycolytic enzyme that regulates the final step of glycolysis; the role of PKM2 in the metabolism, survival, and apoptosis of cancer cells has received increasing attention. Mitochondria are directly or indirectly involved in the regulation of energy metabolism, susceptibility to oxidative stress, and cell death; however, the role of PKM2 in mitochondrial functions remains unclear. Herein, we review the related mechanisms of the role of PKM2 in the regulation of mitochondrial functions from the aspects of metabolism, reactive oxygen species (ROS), dynamic, and apoptosis, which can be highlighted as a target for the clinical management of cardiovascular and metabolic diseases.
    DOI:  https://doi.org/10.1155/2022/7702681
  28. Semin Cancer Biol. 2022 May 12. pii: S1044-579X(22)00112-2. [Epub ahead of print]
      The intricate cross-talks between tumor cells and their microenvironment play a key role in cancer progression and resistance to treatment. In recent years, targeting pro-tumorigenic components of the tumor microenvironment (TME) has emerged as a tantalizing strategy to improve the efficacy of standard-of-care (SOC) treatments, particularly for hard-to-treat cancers such as glioblastoma. In this review, we explore how the distinct microenvironmental niches characteristic of the glioblastoma TME shape response to therapy. In particular, we delve into the interplay between tumor-associated macrophages (TAM) and glioblastoma cells within angiogenic and hypoxic niches, and interrogate their dynamic co-evolution upon SOC therapies that fuels malignancy. Resolving the complexity of therapy-induced alterations in the glioblastoma TME and their impact on disease relapse is a stepping stone to identify targetable pro-tumorigenic pathways and TAM subsets, and may open the way to efficient combination therapies that will improve clinical outcomes.
    Keywords:  angiogenesis; glioblastoma; hypoxia; macrophages; tumor microenvironment
    DOI:  https://doi.org/10.1016/j.semcancer.2022.05.003
  29. Immune Netw. 2022 Apr;22(2): e19
      Coxsackievirus B3 (CVB3) infection causes acute pancreatitis and myocarditis. However, its pathophysiological mechanism is unclear. Here, we investigated how lipid metabolism is associated with exacerbation of CVB3 pathology using high-fat diet (HFD)-induced obese mice. Mice were intraperitoneally inoculated with 1×106 pfu/mouse of CVB3 after being fed a control or HFD to induce obesity. Mice were treated with mitoquinone (MitoQ) to reduce the level of mitochondrial ROS (mtROS). In obese mice, lipotoxicity of white adipose tissue-induced inflammation caused increased replication of CVB3 and mortality. The coxsackievirus adenovirus receptor increased under obese conditions, facilitating CVB3 replication in vitro. However, lipid-treated cells with receptor-specific inhibitors did not reduce CVB3 replication. In addition, lipid treatment increased mitochondria-derived vesicle formation and the number of multivesicular bodies. Alternatively, we found that inhibition of lipid-induced mtROS decreased viral replication. Notably, HFD-fed mice were more susceptible to CVB3-induced mortality in association with increased levels of CVB3 replication in adipose tissue, which was ameliorated by administration of the mtROS inhibitor, MitoQ. These results suggest that mtROS inhibitors can be used as potential treatments for CVB3 infection.
    Keywords:  Coxsackievirus B3; Lipid metabolism; Mitochondria; Mitoquinone; Obesity; Reactive oxygen species
    DOI:  https://doi.org/10.4110/in.2022.22.e19
  30. Nat Commun. 2022 May 19. 13(1): 2801
      T-cell acute lymphoblastic leukemia (T-ALL) is commonly driven by activating mutations in NOTCH1 that facilitate glutamine oxidation. Here we identify oxidative phosphorylation (OxPhos) as a critical pathway for leukemia cell survival and demonstrate a direct relationship between NOTCH1, elevated OxPhos gene expression, and acquired chemoresistance in pre-leukemic and leukemic models. Disrupting OxPhos with IACS-010759, an inhibitor of mitochondrial complex I, causes potent growth inhibition through induction of metabolic shut-down and redox imbalance in NOTCH1-mutated and less so in NOTCH1-wt T-ALL cells. Mechanistically, inhibition of OxPhos induces a metabolic reprogramming into glutaminolysis. We show that pharmacological blockade of OxPhos combined with inducible knock-down of glutaminase, the key glutamine enzyme, confers synthetic lethality in mice harboring NOTCH1-mutated T-ALL. We leverage on this synthetic lethal interaction to demonstrate that IACS-010759 in combination with chemotherapy containing L-asparaginase, an enzyme that uncovers the glutamine dependency of leukemic cells, causes reduced glutaminolysis and profound tumor reduction in pre-clinical models of human T-ALL. In summary, this metabolic dependency of T-ALL on OxPhos provides a rational therapeutic target.
    DOI:  https://doi.org/10.1038/s41467-022-30396-3
  31. Front Immunol. 2022 ;13 843520
      A ketogenic diet (KD) is known to have beneficial health effects. Various types of KD interventions have been applied to manage metabolic syndrome based on modification of diet parameters such as duration of intervention, macronutrient components, and total calories. Nevertheless, the beneficial health impact of isocaloric KD is largely unknown, especially in healthy subjects. The present study investigated the acute effects of a 3-day isocaloric KD. In this non-randomized intervention study, we recruited 15 healthy volunteers aged 24-38 years (7 men and 8 women) and placed them on an isocaloric KD restricting intake of carbohydrates but not energy (75% fat, 20% protein, 5% carbohydrate) for 3 days. Biochemical profiles and laboratory measurements were performed. Peripheral blood monocular cells were cultured, and measured cell stimulated cytokines. After short-term isocaloric KD, subjects lost body weight and serum free fatty acid levels were increased. These results accompanied elevated serum β-hydroxybutyrate (BHB) concentration and fibroblast growth factor 21 (FGF21) levels and improved insulin sensitivity. Regarding the direct effect of BHB on inflammasome activation, interleukin-1β (IL-1β) and tumor necrosis factor-α secretion in response to adenosine triphosphate or palmitate stimulation in human macrophages decreased significantly after isocaloric KD. In ex-vivo experiments with macrophages, both FGF21 and BHB further reduced IL-1β secretion compared to either BHB or FGF21 alone. The inhibitory effect of FGF21 on IL-1β secretion was blunted with bafilomycin treatment, which blocked autophagy flux. In conclusion, isocaloric KD for 3 days is a promising approach to improve metabolic and inflammatory status.Clinical Trial Registration: clinicaltrials.gov (NCT02964572).
    Keywords:  FGF21; IL-1β (interleukin 1β); Ketogenic diet (KD); NLRP3 inflammasome; isocaloric; β-hydroxybutyrate
    DOI:  https://doi.org/10.3389/fimmu.2022.843520
  32. Biomaterials. 2022 May 16. pii: S0142-9612(22)00218-6. [Epub ahead of print]286 121578
      Activation state of synovial macrophages is significantly correlated with disease activity and severity of rheumatoid arthritis (RA) and provides valuable clues for RA treatment. Classically activated M1 macrophages in inflamed synovial joints secrete high levels of pro-inflammatory cytokines and chemokines, resulting in bone erosion and cartilage degradation. Herein, we propose extracellular vesicle (EV)-guided in situ macrophage reprogramming toward anti-inflammatory M2 macrophages as a novel RA treatment modality based on the immunotherapeutic concept of reestablishing M1-M2 macrophage equilibrium in synovial tissue. M2 macrophage-derived EVs (M2-EVs) were able to convert activated M1 into reprogrammed M2 (RM2) macrophages with extremely high efficiency (>90%), producing a distinct protein expression pattern characteristic of anti-inflammatory M2 macrophages. In particular, M2-EVs were enriched for proteins known to be involved in the generation and migration of M2 macrophages as well as macrophage reprogramming factors, allowing for rapid and efficient driving of macrophage polarization toward M2 phenotype. After administration of M2-EVs into the joint of a collagen-induced arthritis mouse model, the synovial macrophage polarization was significantly shifted from M1 to M2 phenotype, a process that benefited greatly from the long residence time (>3 days) of M2-EVs in the joint. This superb in situ macrophage-reprogramming ability of EVs resulted in decreased joint swelling, arthritic index score and synovial inflammation, with corresponding reductions in bone erosion and articular cartilage damage and no systemic toxicity. The anti-RA effects of M2-EVs were comparable to those of the conventional disease-modifying antirheumatic drug, Methotrexate, which causes a range of toxic adverse effects, including gastrointestinal mucosal injury. Overall, our EV-guided reprogramming strategy for in situ tuning of macrophage responses holds great promise for the development of anti-inflammatory therapeutics for the treatment of various inflammatory diseases in addition to RA.
    Keywords:  Extracellular vesicle; Inflammation; Macrophage; Reprogramming; Rheumatoid arthritis
    DOI:  https://doi.org/10.1016/j.biomaterials.2022.121578
  33. Cell Mol Immunol. 2022 May 20.
      Obesity is a major risk factor for cancers including hepatocellular carcinoma (HCC) that develops from a background of non-alcoholic fatty liver disease (NAFLD). Hypercholesterolemia is a common comorbidity of obesity. Although cholesterol biosynthesis mainly occurs in the liver, its role in HCC development of obese people remains obscure. Using high-fat high-carbohydrate diet-associated orthotopic and spontaneous NAFLD-HCC mouse models, we found that hepatic cholesterol accumulation in obesity selectively suppressed natural killer T (NKT) cell-mediated antitumor immunosurveillance. Transcriptome analysis of human liver revealed aberrant cholesterol metabolism and NKT cell dysfunction in NAFLD patients. Notably, cholesterol-lowering rosuvastatin restored NKT expansion and cytotoxicity to prevent obesogenic diet-promoted HCC development. Moreover, suppression of hepatic cholesterol biosynthesis by a mammalian target of rapamycin (mTOR) inhibitor vistusertib preceded tumor regression, which was abolished by NKT inactivation but not CD8+ T cell depletion. Mechanistically, sterol regulatory element-binding protein 2 (SREBP2)-driven excessive cholesterol production from hepatocytes induced lipid peroxide accumulation and deficient cytotoxicity in NKT cells, which were supported by findings in people with obesity, NAFLD and NAFLD-HCC. This study highlights mTORC1/SREBP2/cholesterol-mediated NKT dysfunction in the tumor-promoting NAFLD liver microenvironment, providing intervention strategies that invigorating NKT cells to control HCC in the obesity epidemic.
    Keywords:  HCC; NAFLD; NKT cells; cholesterol; mTOR
    DOI:  https://doi.org/10.1038/s41423-022-00872-3
  34. Food Chem Toxicol. 2022 May 13. pii: S0278-6915(22)00281-2. [Epub ahead of print] 113083
      Hydrogen sulfide (H2S) has been known for its toxicity. However, recent studies have focused on the mechanisms involved in endogenous production and function. To date, the H2S role in insulin signaling and glucose homeostasis is unclear. This uncertainty is even more evident in skeletal muscle, a physiological niche highly relevant for regulating glycemia in response to insulin. This study aimed to investigate the role of H2S on insulin signaling and glucose uptake in the L6 skeletal muscle cell line. We evaluated the endogenous synthesis with the fluorescent dye, 7-azido-4-methyl coumarin (7-AzMC). Glucose restriction-induced an increase in the endogenous levels of H2S, likely through stimulation of cystathionine γ-lyase activity, as its specific inhibitor, PAG (5 mM) prevented this increase, and mRNA levels of CSE decreased with glucose and amino acid restriction. Exogenous H2S reduced insulin-induced glucose uptake at 0.5 up to 24 h, an effect dissociated from the level of Akt phosphorylation. Our results show that glucose restriction induces endogenous production of H2S via CSE. In addition, H2S disrupts insulin-induced glucose uptake independent of the Akt pathway. These results suggest that H2S antagonism over insulin-induced glucose uptake could help maintain the plasmatic glucose levels in conditions that provoke hypoglycemia, which could serve as an H2S-regulated mechanism for maintaining glucose plasmatic levels through the inhibition of the skeletal muscle insulin-depended glucose uptake.
    Keywords:  Glucose uptake; Hydrogen sulfide; Insulin; Nutrient deprivation; Skeletal muscle
    DOI:  https://doi.org/10.1016/j.fct.2022.113083