bims-mepmim Biomed News
on Metabolites in pathological microenvironments and immunometabolism
Issue of 2022–09–04
29 papers selected by
Erika Mariana Palmieri, NIH/NCI Laboratory of Cancer ImmunoMetabolism



  1. Sci Adv. 2022 Sep 02. 8(35): eabn9550
      In mice and humans with cancer, intravenous 13C-glucose infusion results in 13C labeling of tumor tricarboxylic acid (TCA) cycle intermediates, indicating that pyruvate oxidation in the TCA cycle occurs in tumors. The TCA cycle is usually coupled to the electron transport chain (ETC) because NADH generated by the cycle is reoxidized to NAD+ by the ETC. However, 13C labeling does not directly report ETC activity, and other pathways can oxidize NADH, so the ETC's role in these labeling patterns is unverified. We examined the impact of the ETC complex I inhibitor IACS-010759 on tumor 13C labeling. IACS-010759 suppresses TCA cycle labeling from glucose or lactate and increases labeling from glutamine. Cancer cells expressing yeast NADH dehydrogenase-1, which recycles NADH to NAD+ independently of complex I, display normalized labeling when complex I is inhibited, indicating that cancer cell ETC activity regulates TCA cycle metabolism and 13C labeling from multiple nutrients.
    DOI:  https://doi.org/10.1126/sciadv.abn9550
  2. Sci Adv. 2022 Sep 02. 8(35): eabq5206
      Nucleic acid and histone modifications critically depend on the tricarboxylic acid (TCA) cycle for substrates and cofactors. Although a few TCA cycle enzymes have been reported in the nucleus, the corresponding pathways are considered to operate in mitochondria. Here, we show that a part of the TCA cycle is operational also in the nucleus. Using 13C-tracer analysis, we identified activity of glutamine-to-fumarate, citrate-to-succinate, and glutamine-to-aspartate routes in the nuclei of HeLa cells. Proximity labeling mass spectrometry revealed a spatial vicinity of the involved enzymes with core nuclear proteins. We further show nuclear localization of aconitase 2 and 2-oxoglutarate dehydrogenase in mouse embryonic stem cells. Nuclear localization of the latter enzyme, which produces succinyl-CoA, changed from pluripotency to a differentiated state with accompanying changes in the nuclear protein succinylation. Together, our results demonstrate operation of an extended metabolic pathway in the nucleus, warranting a revision of the canonical view on metabolic compartmentalization.
    DOI:  https://doi.org/10.1126/sciadv.abq5206
  3. J Biol Chem. 2022 Aug 25. pii: S0021-9258(22)00861-4. [Epub ahead of print] 102418
      Macrophages (MФ) are an essential immune cell for defense and repair that travel to different tissues and adapt based on local stimuli. A critical factor that may govern their polarization is the cross-talk between metabolism and epigenetics. However, simultaneous measurements of metabolites, epigenetics, and proteins (phenotype) has been a major technical challenge. To address this, we have developed a novel triomics approach using mass spectrometry to comprehensively analyze metabolites, proteins, and histone modifications, in a single sample. To demonstrate this technique, we investigated the metabolic-epigenetic-phenotype axis following polarization of human blood-derived monocytes into either 'pro-inflammatory M1'- or 'anti-inflammatory M2-' MФs. We report here a complex relationship between arginine, tryptophan, glucose, and the citric acid cycle (TCA) metabolism, protein and histone post-translational modifications, and human macrophage polarization that was previously not described. Surprisingly, M1-MФs had globally reduced histone acetylation levels but high levels of acetylated amino acids. This suggests acetyl-CoA was diverted, in part, towards acetylated amino acids. Consistent with this, stable isotope tracing of glucose revealed reduced usage of acetyl-CoA for histone acetylation in M1-MФs. Furthermore, isotope tracing also revealed MФs uncoupled glycolysis from the TCA cycle, as evidenced by poor isotope enrichment of succinate. M2-MФs had high levels of kynurenine and serotonin which are reported to have immune-suppressive effects. Kynurenine is upstream of de novo NAD+ metabolism which is a necessary cofactor for Sirtuin-type histone deacetylases. Taken together, we demonstrate a complex interplay between metabolism and epigenetics that may ultimately influence cell phenotype.
    DOI:  https://doi.org/10.1016/j.jbc.2022.102418
  4. STAR Protoc. 2022 Sep 16. 3(3): 101635
      Air-liquid organotypic culture models enable the study of the cellular crosstalk in the tumor microenvironment. This 3D assay recapitulates the tumor niche more faithfully than 2D culture systems and represents a versatile platform that can be easily adapted to different types of cancer cells, stromal components, or ECM composition. Here, we detail the steps to build an organotypic culture including the preparation of the organotypic structure, organotypic gels, cell seeding, gel casting, membrane processing, and image and data analysis. For complete details on the use and execution of this protocol, please refer to Linares et al. (2022).
    Keywords:  Biotechnology and bioengineering; Cancer; Cell Biology; Cell culture; Tissue Engineering
    DOI:  https://doi.org/10.1016/j.xpro.2022.101635
  5. Front Mol Biosci. 2022 ;9 859787
      Cellular glutamine synthesis is thought to be an important resistance factor in protecting cells from nutrient deprivation and may also contribute to drug resistance. The application of ‟targeted stable isotope resolved metabolomics" allowed to directly measure the activity of glutamine synthetase in the cell. With the help of this method, the fate of glutamine derived nitrogen within the biochemical network of the cells was traced. The application of stable isotope labelled substrates and analyses of isotope enrichment in metabolic intermediates allows the determination of metabolic activity and flux in biological systems. In our study we used stable isotope labelled substrates of glutamine synthetase to demonstrate its role in the starvation response of cancer cells. We applied 13C labelled glutamate and 15N labelled ammonium and determined the enrichment of both isotopes in glutamine and nucleotide species. Our results show that the metabolic compensatory pathways to overcome glutamine depletion depend on the ability to synthesise glutamine via glutamine synthetase. We demonstrate that the application of dual-isotope tracing can be used to address specific reactions within the biochemical network directly. Our study highlights the potential of concurrent isotope tracing methods in medical research.
    Keywords:  GLUL; cancer metabolism; glutamine addiction; glutamine synthetase; nucleotide biosynthesis; targeted stable isotope resolved metabolomics
    DOI:  https://doi.org/10.3389/fmolb.2022.859787
  6. J Inflamm (Lond). 2022 Sep 01. 19(1): 12
       BACKGROUND: Macrophages play a central role in inflammation by phagocytosing invading pathogens, apoptotic cells and debris, as well as mediating repair of tissues damaged by trauma. In order to do this, these dynamic cells generate a variety of inflammatory mediators including eicosanoids such as prostaglandins, leukotrienes and hydroxyeicosatraenoic acids (HETEs) that are formed through the cyclooxygenase, lipoxygenase and cytochrome P450 pathways. The ability to examine the effects of eicosanoid production at the protein level is therefore critical to understanding the mechanisms associated with macrophage activation.
    RESULTS: This study presents a stable isotope labelling with amino acids in cell culture (SILAC) -based proteomics strategy to quantify the changes in macrophage protein abundance following inflammatory stimulation with Kdo2-lipid A and ATP, with a focus on eicosanoid metabolism and regulation. Detailed gene ontology analysis, at the protein level, revealed several key pathways with a decrease in expression in response to macrophage activation, which included a promotion of macrophage polarisation and dynamic changes to energy requirements, transcription and translation. These findings suggest that, whilst there is evidence for the induction of a pro-inflammatory response in the form of prostaglandin secretion, there is also metabolic reprogramming along with a change in cell polarisation towards a reduced pro-inflammatory phenotype.
    CONCLUSIONS: Advanced quantitative proteomics in conjunction with functional pathway network analysis is a useful tool to investigate the molecular pathways involved in inflammation.
    Keywords:  Gene ontology; Inflammation; Prostaglandins; Proteomic; RAW 264.7
    DOI:  https://doi.org/10.1186/s12950-022-00309-8
  7. Elife. 2022 Sep 02. pii: e75908. [Epub ahead of print]11
      Acute myeloid leukaemia (AML) cells interact and modulate components of their surrounding microenvironment into their own benefit. Stromal cells have been shown to support AML survival and progression through various mechanisms. Nonetheless, whether AML cells could establish beneficial metabolic interactions with stromal cells is underexplored. By using a combination of human AML cell lines and AML patient samples together with mouse stromal cells and a MLL-AF9 mouse model, here we identify a novel metabolic crosstalk between AML and stromal cells where AML cells prompt stromal cells to secrete acetate for their own consumption to feed the tricarboxylic acid cycle (TCA) and lipid biosynthesis. By performing transcriptome analysis and tracer-based metabolic NMR analysis, we observe that stromal cells present a higher rate of glycolysis when co-cultured with AML cells. We also find that acetate in stromal cells is derived from pyruvate via chemical conversion under the influence of reactive oxygen species (ROS) following ROS transfer from AML to stromal cells via gap junctions. Overall, we present a unique metabolic communication between AML and stromal cells and propose two different molecular targets, ACSS2 and gap junctions, that could potentially be exploited for adjuvant therapy.
    Keywords:  biochemistry; cancer biology; chemical biology; human
    DOI:  https://doi.org/10.7554/eLife.75908
  8. Cancer Res Commun. 2022 Jul;2(7): 639-652
      Metabolic features of the tumor microenvironment (TME) antagonize anti-tumor immunity. We hypothesized that T cell infiltrated tumors with a known antigen should exhibit superior clinical outcomes, though some fare worse given unfavorable metabolic features leveraging T cell-infiltrated (Thi), human papillomavirus-related (HPV+) head and neck squamous cell carcinomas (HNSC) to test this hypothesis. Expression of 2,520 metabolic genes were analyzed among Thi HPV+ HNSCs stratified by high-risk molecular subtype. RNAseq data from The Cancer Genome Atlas (TCGA; 10 cancer types), single cell RNAseq data, and an immunotherapy-treated melanoma cohort were used to test the association between metabolic gene expression and clinical outcomes and contribution of tumor versus stromal cells to metabolic gene expression. Polyamine (PA) metabolism genes were overexpressed in high-risk, Thi HPV+ HNSCs. Genes involved in PA biosynthesis and transport were associated with T cell infiltration, recurrent or persistent cancer, overall survival status, primary site, molecular subtype, and MYC genomic alterations. PA biogenesis gene sets were associated with tumor intrinsic features while myeloid cells in HPV+ HNSCs were enriched in PA catabolism, regulatory, transport, putrescine, and spermidine gene set expression. PA gene set expression also correlated with IFNγ or cytotoxic T cell ssGSEA scores across TCGA tumor types. PA transport ssGSEA scores were associated with poor survival whereas putrescine ssGSEA scores portended better survival for several tumor types. Thi melanomas enriched in PA synthesis or combined gene set expression exhibited worse anti-PD-1 responses. These data address hurdles to anti-tumor immunity warranting further investigation of divergent polyamine metabolism in the TME.
    Keywords:  Human papillomavirus; head and neck cancer; immunometabolism; polyamines
    DOI:  https://doi.org/10.1158/2767-9764.crc-22-0061
  9. Front Oncol. 2022 ;12 969563
      The methionine cycle comprises a series of reactions that catabolizes and regenerates methionine. This process is crucial to many cellular functions, including polyamine synthesis, DNA synthesis, redox balance, and DNA and histone methylation. In response to antigens, T cells activate the methionine cycle to support proliferation and differentiation, indicating the importance of the methionine cycle to T cell immunity. In cancer, T cells serve as important effectors of adaptive immunity by directly killing cancerous cells. However, the tumor microenvironment can induce a state of T cell exhaustion by regulating the methionine metabolism of T cells, posing a barrier to both endogenous T cell responses and T cell immunotherapy. Here we review the role of methionine cycle metabolites in regulating the activation and effector function of T cells and explore the mechanism by which tumor cells exploit the methionine pathway as a means of immune evasion. Finally, we discuss new perspectives on reprogramming the methionine cycle of T cells to enhance anti-tumor immunotherapy.
    Keywords:  T cells; cancer; cancer immunotherapy; immunemetabolism; metabolism; the methionine cycle
    DOI:  https://doi.org/10.3389/fonc.2022.969563
  10. Biochim Biophys Acta Mol Basis Dis. 2022 Aug 26. pii: S0925-4439(22)00201-0. [Epub ahead of print] 166530
      Macrophages undergo extensive metabolic reprogramming during classical pro-inflammatory polarization (M1-like). The accumulation of itaconate has been recognized as both a consequence and mediator of the inflammatory response. In this study we first examined the specific functions of itaconate inside fractionated mitochondria. We show that M1 macrophages produce itaconate de novo via aconitase decarboxylase 1 (ACOD1) inside mitochondria. The carbon for this reaction is not only supplied by oxidative TCA cycling, but also through the reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase (IDH). While macrophages are capable of sustaining a certain degree of itaconate production during hypoxia by augmenting the activity of IDH-dependent reductive carboxylation, we demonstrate that sufficient itaconate synthesis requires a balance of reductive and oxidative TCA cycle metabolism in mouse macrophages. In comparison, human macrophages increase itaconate accumulation under hypoxic conditions by augmenting reductive carboxylation activity. We further demonstrated that itaconate attenuates reductive carboxylation at IDH2, restricting its own production and the accumulation of the immunomodulatory metabolites citrate and 2-hydroxyglutarate. In line with this, reductive carboxylation is enhanced in ACOD1-depleted macrophages. Mechanistically, the inhibition of IDH2 by itaconate is linked to the alteration of the mitochondrial NADP+/NADPH ratio and competitive succinate dehydrogenase inhibition. Taken together, our findings extend the current model of TCA cycle reprogramming during pro-inflammatory macrophage activation and identified novel regulatory properties of itaconate.
    Keywords:  2-hydroxyglutarate; Mitochondrial metabolism; Proinflammatory macrophage; Redox balance; Reductive carboxylation; TCA cycle
    DOI:  https://doi.org/10.1016/j.bbadis.2022.166530
  11. J Hematol Oncol. 2022 Aug 29. 15(1): 120
      Metabolic reprogramming of cancer cells within the tumor microenvironment typically occurs in response to increased nutritional, translation and proliferative demands. Altered lipid metabolism is a marker of tumor progression that is frequently observed in aggressive tumors with poor prognosis. Underlying these abnormal metabolic behaviors are posttranslational modifications (PTMs) of lipid metabolism-related enzymes and other factors that can impact their activity and/or subcellular localization. This review focuses on the roles of these PTMs and specifically on how they permit the re-wiring of cancer lipid metabolism, particularly within the context of the tumor microenvironment.
    Keywords:  Cancer; Lipid metabolism reprogramming; Posttranslational modification; Tumor microenvironment
    DOI:  https://doi.org/10.1186/s13045-022-01340-1
  12. Blood Adv. 2022 Aug 31. pii: bloodadvances.2022008242. [Epub ahead of print]
      Cancer-specific metabolic activities play a crucial role in the pathogenesis of human malignancies. To investigate human acute leukemia-specific metabolic properties, we comprehensively measured the cellular metabolites within the CD34+ fraction of normal hematopoietic stem progenitor cells (HSPCs), and primary human acute myelogenous leukemia (AML) and lymphoblastic leukemia (ALL) cells. Here we show that human leukemia addicts to the branched-chain amino acid (BCAA) metabolism to maintain their stemness, irrespective of myeloid or lymphoid types. Human primary acute leukemias had BCAA transporters for BCAA uptake, cellular BCAA, α-ketoglutarate (α-KG) and cytoplasmic BCAA transaminase-1 (BCAT1) at significantly higher levels than control HSPCs. Isotope-tracing experiments showed that in primary leukemia cells, BCAT1 actively catabolizes BCAA using α-KG into branched-chain α-ketoacids (BCKAs), whose metabolic processes provide leukemia cells with critical substrates for the TCA cycle and the non-essential amino acids synthesis, both of which reproduce α-KG to maintain its cellular level. In xenogeneic transplantation experiments, deprivation of BCAA from daily diet strongly inhibited expansion, engraftment and self-renewal of human acute leukemia cells. Inhibition of BCAA catabolism in primary AML or ALL cells specifically inactivates polycomb repressive complex 2 (PRC2) function, an epigenetic regulator for stem cell signatures, through inhibiting transcription of PRC components, such as zeste homolog 2 (EZH2) and embryonic ectoderm development (EED). Accordingly, BCAA catabolism plays an important role in maintenance of stemness in primary human AML and ALL, and molecules related to the BCAA metabolism pathway should be critical targets for acute leukemia treatment.
    DOI:  https://doi.org/10.1182/bloodadvances.2022008242
  13. Exp Hematol Oncol. 2022 Sep 01. 11(1): 49
      Cancer cells are well-known for their capacity to adapt their metabolism to their increasing energy demands which is necessary for tumor progression. This is no different for Multiple Myeloma (MM), a hematological cancer which develops in the bone marrow (BM), whereby the malignant plasma cells accumulate and impair normal BM functions. It has become clear that the hypoxic BM environment contributes to metabolic rewiring of the MM cells, including changes in metabolite levels, increased/decreased activity of metabolic enzymes and metabolic shifts. These adaptations will lead to a pro-tumoral environment stimulating MM growth and drug resistance In this review, we discuss the identified metabolic changes in MM and the BM microenvironment and summarize how these identified changes have been targeted (by inhibitors, genetic approaches or deprivation studies) in order to block MM progression and survival.
    Keywords:  Bone marrow microenvironment; Glucose metabolism; Glutamine metabolism; Glycolysis; Hypoxia; Lactate metabolism; Lipid metabolism; Metabolism; Multiple myeloma; Oxidative phosphorylation
    DOI:  https://doi.org/10.1186/s40164-022-00303-z
  14. Circ Res. 2022 Aug 31. 101161CIRCRESAHA122321227
       BACKGROUND: L-2-hydroxyglutarate (L2HG) couples mitochondrial and cytoplasmic energy metabolism to support cellular redox homeostasis. Under oxygen-limiting conditions, mammalian cells generate L2HG to counteract the adverse effects of reductive stress induced by hypoxia. Very little is known, however, about whether and how L2HG provides tissue protection from redox stress during low-flow ischemia (LFI) and ischemia-reperfusion injury. We examined the cardioprotective effects of L2HG accumulation against LFI and ischemia-reperfusion injury and its underlying mechanism using genetic mouse models.
    METHODS AND RESULTS: L2HG accumulation was induced by homozygous (L2HGDH [L-2-hydroxyglutarate dehydrogenase]-/-) or heterozygous (L2HGDH+/-) deletion of the L2HGDH gene in mice. Hearts isolated from these mice and their wild-type littermates (L2HGDH+/+) were subjected to baseline perfusion or 90-minute LFI or 30-minute no-flow ischemia followed by 60- or 120-minute reperfusion. Using [13C]- and [31P]-NMR spectroscopy, high-performance liquid chromatography, real-time quantitative real-time polymerase chain reaction, ELISA, triphenyltetrazolium staining, colorimetric/fluorometric spectroscopy, and echocardiography, we found that L2HGDH deletion induces L2HG accumulation at baseline and under stress conditions with significant functional consequences. In response to LFI or ischemia-reperfusion, L2HG accumulation shifts glucose flux from glycolysis towards the pentose phosphate pathway. These key metabolic changes were accompanied by enhanced cellular reducing potential, increased elimination of reactive oxygen species, attenuated oxidative injury and myocardial infarction, preserved cellular energy state, and improved cardiac function in both L2HGDH-/- and L2HGDH+/- hearts compared with L2HGDH+/+ hearts under ischemic stress conditions.
    CONCLUSION: L2HGDH deletion-induced L2HG accumulation protects against myocardial injury during LFI and ischemia-reperfusion through a metabolic shift of glucose flux from glycolysis towards the pentose phosphate pathway. L2HG offers a novel mechanism for eliminating reactive oxygen species from myocardial tissue, mitigating redox stress, reducing myocardial infarct size, and preserving high-energy phosphates and cardiac function. Targeting L2HG levels through L2HGDH activity may serve as a new therapeutic strategy for cardiovascular diseases related to oxidative injury.
    Keywords:  glycolysis; ischemia; pentose phosphate pathway; reactive oxygen species; reperfusion
    DOI:  https://doi.org/10.1161/CIRCRESAHA.122.321227
  15. Signal Transduct Target Ther. 2022 Sep 01. 7(1): 303
      Endothelial-to-mesenchymal transition (EndoMT), the process wherein endothelial cells lose endothelial identity and adopt mesenchymal-like phenotypes, constitutes a critical contributor to cardiac fibrosis. The phenotypic plasticity of endothelial cells can be intricately shaped by alteration of metabolic pathways, but how endothelial cells adjust cellular metabolism to drive EndoMT is incompletely understood. Here, we identified 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) as a critical driver of EndoMT via triggering abnormal glycolysis and compromising mitochondrial respiration. Pharmacological suppression of PFKFB3 with salvianolic acid C (SAC), a phenolic compound derived from Salvia miltiorrhiza, attenuates EndoMT and fibrotic response. PFKFB3-haplodeficiency recapitulates the anti-EndoMT effect of SAC while PFKFB3-overexpression augments the magnitude of EndoMT and exacerbates cardiac fibrosis. Mechanistically, PFKFB3-driven glycolysis compromises cytoplasmic nicotinamide adenine dinucleotide phosphate (reduced form, NADPH) production via hijacking glucose flux from pentose phosphate pathway. Efflux of mitochondrial NADPH through isocitrate/α-ketoglutarate shuttle replenishes cytoplasmic NADPH pool but meanwhile impairs mitochondrial respiration by hampering mitochondrial iron-sulfur cluster biosynthesis. SAC disrupts PFKFB3 stability by accelerating its degradation and thus maintains metabolic homeostasis in endothelial cells, underlying its anti-EndoMT effects. These findings for the first time identify the critical role of PFKFB3 in triggering EndoMT by driving abnormal glycolysis in endothelial cells, and also highlight the therapeutic potential for pharmacological intervention of PFKFB3 (with SAC or other PFKFB3 inhibitors) to combat EndoMT-associated fibrotic responses via metabolic regulation.
    DOI:  https://doi.org/10.1038/s41392-022-01097-6
  16. Front Oncol. 2022 ;12 976961
      Erythropoietin receptor (EPOR) is widely expressed in healthy and malignant tissues. In certain malignancies, EPOR stimulates tumor growth. In healthy tissues, EPOR controls processes other than erythropoiesis, including mitochondrial metabolism. We hypothesized that EPOR also controls the mitochondrial metabolism in cancer cells. To test this hypothesis, we generated EPOR-knockdown cancer cells to grow tumor xenografts in mice and analyzed tumor cellular respiration via high-resolution respirometry. Furthermore, we analyzed cellular respiratory control, mitochondrial content, and regulators of mitochondrial biogenesis in vivo and in vitro in different cancer cell lines. Our results show that EPOR controls tumor growth and mitochondrial biogenesis in tumors by controlling the levels of both, pAKT and inducible NO synthase (iNOS). Furthermore, we observed that the expression of EPOR is associated with the expression of the mitochondrial marker VDAC1 in tissue arrays of lung cancer patients, suggesting that EPOR indeed helps to regulate mitochondrial biogenesis in tumors of cancer patients. Thus, our data imply that EPOR not only stimulates tumor growth but also regulates tumor metabolism and is a target for direct intervention against progression.
    Keywords:  OXPHOS; VDAC1; erythropoietin receptor; mitochondrial biogenesis; nitric oxide (NO); respirometry; tumor metabolism
    DOI:  https://doi.org/10.3389/fonc.2022.976961
  17. Int J Cancer. 2022 Sep 02.
      The immunosuppressive tumor microenvironment (TME) in glioblastoma (GBM) is mainly driven by tumor-associated macrophages (TAMs). We explored whether their sustained iron metabolism and immunosuppressive activity were correlated, and whether blocking the central enzyme of the heme catabolism pathway, heme oxygenase-1 (HO-1), could reverse their tolerogenic activity. To this end, we investigated iron metabolism in bone marrow-derived macrophages (BMDMs) isolated from GBM specimens and in in vitro-derived macrophages (Mφ) from healthy donor (HD) blood monocytes. We found that HO-1 inhibition abrogated the immunosuppressive activity of both BMDMs and Mφ, and that immunosuppression requires both cell-to-cell contact and soluble factors, as HO-1 inhibition abolished IL-10 release, and significantly reduced STAT3 activation as well as PD-L1 expression. Interestingly, not only did HO-1 inhibition downregulate IDO1 and ARG-2 gene expression, but also reduced IDO1 enzymatic activity. Moreover, T cell activation status affected PD-L1 expression and IDO1 activity, which were upregulated in the presence of activated, but not resting, T cells. Our results highlight the crucial role of HO-1 in the immunosuppressive activity of macrophages in the GBM TME and demonstrate the feasibility of reprogramming them as an alternative therapeutic strategy for restoring immune surveillance. This article is protected by copyright. All rights reserved.
    Keywords:  Iron metabolism; glioblastoma; heme oxygenase-1; macrophages; tumor microenvironment
    DOI:  https://doi.org/10.1002/ijc.34270
  18. Lipids Health Dis. 2022 Aug 30. 21(1): 82
       PURPOSE: Hypoxia is a common feature of laryngocarcinoma. Alterations in lipid metabolism are an important metabolic rewiring phenomenon for malignant cells to maintain their rapid proliferation in the hypoxic microenvironment, which makes most cancers, including laryngocarcinoma, difficult to cure. However, the mechanisms involved in lipid metabolism in laryngocarcinoma is still unclear. This study aimed to clarify the changes in lipid metabolism of laryngocarcinoma cells under hypoxic conditions and explore the related mechanisms.
    METHODS: Hep2 cells were incubated in a normoxic or hypoxic environment (5% CO2 and 1% O2) at 37 °C for 24 h. CCK-8 cell viability assay and colony formation assay were performed to detect cells proliferation. And lipid metabolic indices including TG and NEFA were determined by kits. The mechanism involved in the regulation of lipid metabolism was explored by RNA-seq and bioinformatic analysis. The MIF inhibitor ISO-1 and JAK inhibitor XL019 were used to verify the mechanism. Finally, a tumour xenograft model was applied to further verify these results in vivo.
    RESULTS: Hypoxia promoted cell proliferation and increased the levels of TG and NEFA in Hep2 cells. Three genes, MIF, ENO2, and LDHA, that were screened by the intersection of hypoxia gene sets and fatty gene sets and were verified by qPCR. The MIF levels were elevated when cells were exposed to hypoxia. Through GSEA and RNA-seq analysis, the JAK/STAT pathway was screened. Hypoxia increased MIF levels and activated the IL-6/JAK/STAT pathway. The MIF inhibitor ISO-1inhibited cell proliferation under hypoxia and reversed the change in TG levels and IL-6 levels. And ISO-1 reversed the expression pattern of the screened genes in the JAK/STAT pathway. Finally, a tumour xenograft model further verified these results in vivo.
    CONCLUSION: Hypoxia induced reprogramming of lipid metabolism in laryngocarcinoma cells through the MIF/IL-6/JAK-STAT pathway. This study revealed one mechanism that allows laryngocarcinoma cells to adapt to the hypoxic tumour microenvironment. Therefore, a drug targeting the MIF/IL-6/JAK-STAT pathway might be a promising therapeutic option for the treatment of laryngocarcinoma.
    Keywords:  Hypoxia; IL-6/JAK-STAT pathway; Lipid metabolism; MIF
    DOI:  https://doi.org/10.1186/s12944-022-01693-z
  19. Front Biosci (Landmark Ed). 2022 Aug 15. 27(8): 243
       BACKGROUND: Metabolic activities of tumor cells lead to a depletion of nutrients within the tumor microenvironment, which results in the dysfunction of infiltrating T cells. Here, we explored how glutamine (gln) metabolism, which is essential for biosynthesis and cellular function, can affect the functions of cytotoxic T lymphocytes (CTLs).
    METHODS: Activated CTLs were co-cultured with hepatoma cells. Western blot was used to analyze changes of proteins and ELISA was used to analyze changes of effector. RNA-sequencing was used to detect differentially expressed genes in CTLs. The status of the endoplasmic reticulum (ER) was investigated using transmission electron microscopy experiments.
    RESULTS: Co-culturing CTLs and hepatoma cells revealed that CTLL-2 cells in the co-culture group expressed high levels of PD-1 (Programmed cell death protein 1), TIM-3 (T cell immunoglobulin and mucin domain-containing protein-3), GRP78 (Glucose regulated protein 78), and P-PERK (phosphorylated protein kinase RNA-activated-like endoplasmic reticulum kinase) and secreted low levels of Granzyme B and perforin. Additionally, the substructure of the ER was severely damaged. When CTLs were treated with an inhibitor of ER stress, their functions were restored. Next, complete medium without Gln was used to culture cells, causing CTLs to display dysfunction and ER stress. WB results revealed decreased expression levels of GLS2 and SLC1A5 (Solute carrier family 1 member 5) in CTLs in the co-culture group. Subsequently, glutaminase (GLS) inhibitors were added to the cultures. As expected, CTLs treated with a GLS2 inhibitor had increased protein content of PD-1 and TIM-3, decreased secretion of Granzyme B and perforin, and an enhanced ER stress response.
    CONCLUSIONS: In summary, CTLs are functionally downregulated induced by hepatoma cells through the Gln-GLS2-ERS pathway.
    Keywords:  CTLs; GLS2; dysfunction; endoplasmic reticulum stress; glutamine
    DOI:  https://doi.org/10.31083/j.fbl2708243
  20. Nat Rev Mol Cell Biol. 2022 Sep 02.
      Transmembrane proteins comprise ~30% of the mammalian proteome, mediating metabolism, signalling, transport and many other functions required for cellular life. The microenvironment of integral membrane proteins (IMPs) is intrinsically different from that of cytoplasmic proteins, with IMPs solvated by a compositionally and biophysically complex lipid matrix. These solvating lipids affect protein structure and function in a variety of ways, from stereospecific, high-affinity protein-lipid interactions to modulation by bulk membrane properties. Specific examples of functional modulation of IMPs by their solvating membranes have been reported for various transporters, channels and signal receptors; however, generalizable mechanistic principles governing IMP regulation by lipid environments are neither widely appreciated nor completely understood. Here, we review recent insights into the inter-relationships between complex lipidomes of mammalian membranes, the membrane physicochemical properties resulting from such lipid collectives, and the regulation of IMPs by either or both. The recent proliferation of high-resolution methods to study such lipid-protein interactions has led to generalizable insights, which we synthesize into a general framework termed the 'functional paralipidome' to understand the mutual regulation between membrane proteins and their surrounding lipid microenvironments.
    DOI:  https://doi.org/10.1038/s41580-022-00524-4
  21. Front Immunol. 2022 ;13 932412
      Immune cells and the cytokines they produce are important mediators of the transition from colitis to colon cancer, but the mechanisms mediating this disease progression are poorly understood. Interferon gamma (IFN-γ) is known to contribute to the pathogenesis of colitis through immune modulatory mechanisms, and through direct effects on endothelial and epithelial homeostasis. Here we explore whether IFN-γ influences tumor progression by expanding the effector memory T cells (TEM) population and restricting the expression of tumor suppressors in a preclinical model of spontaneous colitis-associated colorectal cancer (CAC). We show that IFN-γ expression is significantly increased both in the T cells and the colonic mucosal epithelia of mice with a T cell-restricted deletion of the TGF-β intermediate, SMAD4 (Smad4TKO). The increase of IFN-γ expression correlates with the onset of spontaneous CAC in Smad4TKO mice by 6 months of age. This phenotype is greatly ameliorated by the introduction of a germline deletion of IFN-γ in Smad4TKO mice (Smad4TKO/IFN-γKO, DKO). DKO mice had a significantly reduced incidence and progression of CAC, and a decrease in the number of mucosal CD4+ TEM cells, when compared to those of Smad4TKO mice. Similarly, the colon epithelia of DKO mice exhibited a non-oncogenic signature with a decrease in the expression of iNOS and p-STAT1, and a restoration of the tumor suppressor gene, 15-hydroxyprostaglandin dehydrogenase (15-PGDH). In vitro, treatment of human colon cancer cells with IFN-γ decreased the expression of 15-PGDH. Our data suggest that Smad4-deficient T cells promote CAC through mechanisms that include an IFN-γ-dependent suppression of the tumor suppressor 15-PGDH.
    Keywords:  15-PGDH; CD4 effector T cell; IFN-gamma; Smad4; colitis-associated colon cancer
    DOI:  https://doi.org/10.3389/fimmu.2022.932412
  22. Open Life Sci. 2022 ;17(1): 856-864
      Fibroblast growth factor 21 (FGF21) is secreted by hepatocytes as a peptide hormone to regulate glucose and lipid metabolism. FGF21 promotes hepatic ketogenesis and increases ketone body utilization in starvation. Histones are the target molecules of nutrients in regulating hepatic metabolic homeostasis. However, the effect of ketone bodies on FGF21 expression and the involvement of histones in it is not clear yet. The present study observed the effects of β-hydroxybutyrate (β-OHB), the main physiological ketone body, on FGF21 expression in human hepatoma HepG2 cells in vitro and in mice in vivo, and the role of histone deacetylases (HDACs) in β-OHB-regulated FGF21 expression was investigated. The results showed that β-OHB significantly upregulated FGF21 gene expression and increased FGF21 protein levels while it inhibited HDACs' activity in HepG2 cells. HDACs' inhibition by entinostat upregulated FGF21 expression and eliminated β-OHB-stimulated FGF21 expression in HepG2 cells. Intraperitoneal injections of β-OHB in mice resulted in the elevation of serum β-OHB and the inhibition of hepatic HDACs' activity. Meanwhile, hepatic FGF21 expression and serum FGF21 levels were significantly increased in β-OHB-treated mice compared with the control. It is suggested that β-OHB upregulates FGF21 expression through inhibition of HDACs' activity in hepatocytes.
    Keywords:  fibroblast growth factor 21; hepatocyte; histone deacetylases; β-hydroxybutyrate
    DOI:  https://doi.org/10.1515/biol-2022-0095
  23. Biomed Chromatogr. 2022 Aug 31. e5494
      Mass spectrometry imaging (MSI) is a powerful label-free analysis technique that can provide simultaneous spatial distribution of multiple compounds in a single experiment. By combining the sensitive and rapid screening of high-throughput mass spectrometry with spatial chemical information, metabolite analysis and morphological characteristics are presented in a single image. MSI can be used for qualitative and quantitative analysis of metabolic profiles and it can provide visual analysis of spatial distribution information of complex biological and microbial systems. Matrix assisted laser desorption ionization, laser ablation electrospray ionization and desorption electrospray ionization are commonly used in MSI. Here, we summarize and compare these three technologies, as well as the applications and prospects of MSI in metabolomics.
    Keywords:  Mass spectrometry; biological sample; imaging; metabolomics
    DOI:  https://doi.org/10.1002/bmc.5494
  24. iScience. 2022 Sep 16. 25(9): 104896
      The metabolic responses of organism to external stimuli are characterized by the multicellular- and multiorgan-based synergistic regulation. Network analysis is a powerful tool to investigate this multiscale interaction. The imaging mass spectrometry (iMS)-based spatial omics provides multidimensional and multiscale information, thus offering the possibility of network analysis to investigate metabolic response of organism to environmental stimuli. We present iMS dataset-sourced multiscale network (iMS2Net) strategy to uncover prenatal environmental pollutant (PM2.5)-induced metabolic responses in the scales of cell and organ from metabolite abundances and metabolite-metabolite interaction using mouse fetal model, including metabotypic similarity, metabolic vulnerability, metabolic co-variability and metabolic diversity within and between organs. Furthermore, network-based analysis results confirm close associations between lipid metabolites and inflammatory cytokine release. This networking methodology elicits particular advantages for modeling the dynamic and adaptive processes of organism under environmental stresses or pathophysiology and provides molecular mechanism to guide the occurrence and development of systemic diseases.
    Keywords:  Metabolomics; Omics; Systems biology
    DOI:  https://doi.org/10.1016/j.isci.2022.104896
  25. Front Mol Biosci. 2022 ;9 959738
      Targeted therapy for acute myeloid leukemia (AML) is an effective strategy, but currently, there are very limited therapeutic targets for AML treatment. Ferroptosis is strongly related to drug resistance and carcinogenesis. However, there are few reports about ferroptosis in AML. This article explores the relationship between ferroptosis-related gene (FRG) expression and prognosis in AML patients from the FerrDb and the Cancer Genome Atlas (TCGA) databases. The ferroptosis-related gene ARNTL was observed to have high expression and poor prognosis in AML. Receiver operating characteristic curve (ROC) analysis revealed the predictive accuracy of the signature. The area under the time-dependent ROC curve (AUC) was 0.533 at one year, 0.619 at two years, and 0.622 at three years within the training cohort. Moreover, we found that the ARNTL expression is closely associated with tumor-infiltrating immune cells like the macrophages and NK cells. Inhibiting the ARNTL expression suppressed colony formation and induced ferroptosis in AML cells. Overall, the survival prediction model constructed based on ARNTL accurately predicted the survival in AML patients, which could be a potential candidate for diagnosing and treating AML.
    Keywords:  AML; ARNTL; ferroptosis; immune cell infiltration; overall survival (OS)
    DOI:  https://doi.org/10.3389/fmolb.2022.959738
  26. Nat Commun. 2022 Sep 02. 13(1): 5184
      Cellular metabolism underpins immune cell functionality, yet our understanding of metabolic influences in human dendritic cell biology and their ability to orchestrate immune responses is poorly developed. Here, we map single-cell metabolic states and immune profiles of inflammatory and tolerogenic monocytic dendritic cells using recently developed multiparametric approaches. Single-cell metabolic pathway activation scores reveal simultaneous engagement of multiple metabolic pathways in distinct monocytic dendritic cell differentiation stages. GM-CSF/IL4-induce rapid reprogramming of glycolytic monocytes and transient co-activation of mitochondrial pathways followed by TLR4-dependent maturation of dendritic cells. Skewing of the mTOR:AMPK phosphorylation balance and upregulation of OXPHOS, glycolytic and fatty acid oxidation metabolism underpin metabolic hyperactivity and an immunosuppressive phenotype of tolerogenic dendritic cells, which exhibit maturation-resistance and a de-differentiated immune phenotype marked by unique immunoregulatory receptor signatures. This single-cell dataset provides important insights into metabolic pathways impacting the immune profiles of human dendritic cells.
    DOI:  https://doi.org/10.1038/s41467-022-32849-1
  27. Cell. 2022 Sep 01. pii: S0092-8674(22)00978-3. [Epub ahead of print]185(18): 3356-3374.e22
      Drug-tolerant persister cells (persisters) evade apoptosis upon targeted and conventional cancer therapies and represent a major non-genetic barrier to effective cancer treatment. Here, we show that cells that survive treatment with pro-apoptotic BH3 mimetics display a persister phenotype that includes colonization and metastasis in vivo and increased sensitivity toward ferroptosis by GPX4 inhibition. We found that sublethal mitochondrial outer membrane permeabilization (MOMP) and holocytochrome c release are key requirements for the generation of the persister phenotype. The generation of persisters is independent of apoptosome formation and caspase activation, but instead, cytosolic cytochrome c induces the activation of heme-regulated inhibitor (HRI) kinase and engagement of the integrated stress response (ISR) with the consequent synthesis of ATF4, all of which are required for the persister phenotype. Our results reveal that sublethal cytochrome c release couples sublethal MOMP to caspase-independent initiation of an ATF4-dependent, drug-tolerant persister phenotype.
    Keywords:  ATF4; Bcl-2 family; GPX4; HRI; ferroptosis; persister integrated stress response
    DOI:  https://doi.org/10.1016/j.cell.2022.07.025
  28. EMBO J. 2022 Aug 29. e111161
      Phagocytosis is the necessary first step to sense foreign microbes or particles and enables activation of innate immune pathways such as inflammasomes. However, the molecular mechanisms underlying how phagosomes modulate inflammasome activity are not fully understood. We show that in murine dendritic cells (DCs), the lysosomal histidine/peptide solute carrier transporter SLC15A4, associated with human inflammatory disorders, is recruited to phagosomes and is required for optimal inflammasome activity after infectious or sterile stimuli. Dextran sodium sulfate-treated SLC15A4-deficient mice exhibit decreased colon inflammation, reduced IL-1β production by intestinal DCs, and increased autophagy. Similarly, SLC15A4-deficient DCs infected with Salmonella typhimurium show reduced caspase-1 cleavage and IL-1β production. This correlates with peripheral NLRC4 inflammasome assembly and increased autophagy. Overexpression of constitutively active mTORC1 rescues decreased IL-1β levels and caspase1 cleavage, and restores perinuclear inflammasome positioning. Our findings support that SLC15A4 couples phagocytosis with inflammasome perinuclear assembly and inhibition of autophagy through phagosomal content sensing. Our data also reveal the previously unappreciated importance of mTORC1 signaling pathways to promote and sustain inflammasome activity.
    Keywords:  SLC15A4; dendritic cells; inflammasomes; mTORC1; phagocytosis
    DOI:  https://doi.org/10.15252/embj.2022111161
  29. Sci Rep. 2022 Sep 01. 12(1): 14902
      Emerging evidence suggests that 7-ketocholesterol (7-KC), one of the most abundant dietary oxysterols, causes inflammation and cardiovascular diseases. Here we show the deteriorating effects of dietary 7-KC on myocardial ischemia-reperfusion (IR) injury and detailed the molecular mechanisms. A high-fat high-cholesterol diet containing 7-KC (7KWD) for 3 weeks increased the plasma 7-KC level compared with high-fat high-cholesterol diet in mice. In wild-type mice but not in CCR2-/- mice, dietary 7-KC increased the myocardial infarct size after IR. Flow cytometry revealed that the ratio of Ly-6Chigh inflammatory monocytes to total monocytes was increased in the 7KWD group. Unbiased RNA sequencing using murine primary macrophages revealed that 7-KC regulated the expression of transcripts related to inflammation and cholesterol biosynthesis. We further validated that in vitro, 7-KC induced endoplasmic reticulum stress, mitochondrial reactive oxygen species production, and nuclear factor-kappa B activation, which are associated with increased mRNA levels of proinflammatory cytokines. Administration of N-acetyl-L-cysteine or siRNA-mediated knockdown of PKR-like endoplasmic reticulum kinase or endoplasmic reticulum oxidase 1α suppressed the levels of 7-KC-induced inflammation. Dietary 7-KC exacerbates myocardial IR injury through monocyte/macrophage-mediated inflammation. Endoplasmic reticulum stress and oxidative stress are involved in the 7-KC-induced proinflammatory response in macrophages.
    DOI:  https://doi.org/10.1038/s41598-022-19065-z