bims-mepmim Biomed News
on Metabolites in pathological microenvironments and immunometabolism
Issue of 2024‒09‒15
twenty-one papers selected by
Erika Mariana Palmieri, NIH/NCI Laboratory of Cancer ImmunoMetabolism



  1. Sci Transl Med. 2024 Sep 11. 16(764): eadi0284
      Proinflammatory hepatic macrophage activation plays a key role in the development of nonalcoholic steatohepatitis (NASH). This involves increased embryonic hepatic Kupffer cell (KC) death, facilitating the replacement of KCs with bone marrow-derived recruited hepatic macrophages (RHMs) that highly express proinflammatory genes. Moreover, phago/efferocytic activity of KCs is diminished in NASH, enhancing liver inflammation. However, the molecular mechanisms underlying these changes in KCs are not known. Here, we show that hypoxia-inducible factor 2α (HIF-2α) mediates NASH-associated decreased KC growth and efferocytosis by enhancing lysosomal stress. At the molecular level, HIF-2α stimulated mammalian target of rapamycin (mTOR)- and extracellular signal-regulated kinase-dependent inhibitory transcription factor EB (TFEB) phosphorylation, leading to decreased lysosomal and phagocytic gene expression. With increased metabolic stress and phago/efferocytic burden in NASH, these changes were sufficient to increase lysosomal stress, causing decreased efferocytosis and lysosomal cell death. Of interest, HIF-2α-dependent TFEB regulation only occurred in KCs but not RHMs. Instead, in RHMs, HIF-2α promoted mitochondrial reactive oxygen species production and proinflammatory activation by increasing ANT2 expression and mitochondrial permeability transition. Consequently, myeloid lineage-specific or KC-specific HIF-2α depletion or the inhibition of mTOR-dependent TFEB inhibition using antisense oligonucleotide treatment protected against the development of NASH in mice. Moreover, treatment with an HIF-2α-specific inhibitor reduced inflammatory and fibrogenic gene expression in human liver spheroids cultured under a NASH-like condition. Together, our results suggest that macrophage subtype-specific effects of HIF-2α collectively contribute to the proinflammatory activation of liver macrophages, leading to the development of NASH.
    DOI:  https://doi.org/10.1126/scitranslmed.adi0284
  2. Cell Metab. 2024 Sep 08. pii: S1550-4131(24)00335-8. [Epub ahead of print]
      Endothelial cells (ECs) not only form passive blood conduits but actively contribute to nutrient transport and organ homeostasis. The role of ECs in glucose homeostasis is, however, poorly understood. Here, we show that, in skeletal muscle, endothelial glucose transporter 1 (Glut1/Slc2a1) controls glucose uptake via vascular metabolic control of muscle-resident macrophages without affecting transendothelial glucose transport. Lowering endothelial Glut1 via genetic depletion (Glut1ΔEC) or upon a short-term high-fat diet increased angiocrine osteopontin (OPN/Spp1) secretion. This promoted resident muscle macrophage activation and proliferation, which impaired muscle insulin sensitivity. Consequently, co-deleting Spp1 from ECs prevented macrophage accumulation and improved insulin sensitivity in Glut1ΔEC mice. Mechanistically, Glut1-dependent endothelial glucose metabolic rewiring increased OPN in a serine metabolism-dependent fashion. Our data illustrate how the glycolytic endothelium creates a microenvironment that controls resident muscle macrophage phenotype and function and directly links resident muscle macrophages to the maintenance of muscle glucose homeostasis.
    Keywords:  GLUT1; endothelial cells; endothelial metabolism; inflammation; insulin sensitivity; osteopontin; resident macrophages; serine; skeletal muscle; vasculature
    DOI:  https://doi.org/10.1016/j.cmet.2024.08.008
  3. Nat Metab. 2024 Sep 06.
      Macrophage efferocytosis prevents apoptotic cell (AC) accumulation and triggers inflammation-resolution pathways. The mechanisms linking efferocytosis to resolution often involve changes in macrophage metabolism, but many gaps remain in our understanding of these processes. We now report that efferocytosis triggers an indoleamine 2,3-dioxygenase-1 (IDO1)-dependent tryptophan (Trp) metabolism pathway that promotes several key resolution processes, including the induction of pro-resolving proteins, such interleukin-10, and further enhancement of efferocytosis. The process begins with upregulation of Trp transport and metabolism, and it involves subsequent activation of the aryl hydrocarbon receptor (AhR) by the Trp metabolite kynurenine (Kyn). Through these mechanisms, macrophage IDO1 and AhR contribute to a proper resolution response in several different mouse models of efferocytosis-dependent tissue repair, notably during atherosclerosis regression induced by plasma low-density lipoprotein (LDL) lowering. These findings reveal an integrated metabolism programme in macrophages that links efferocytosis to resolution, with possible therapeutic implications for non-resolving chronic inflammatory diseases, notably atherosclerosis.
    DOI:  https://doi.org/10.1038/s42255-024-01115-7
  4. Nat Metab. 2024 Sep 09.
      While heterogeneity is a key feature of cancer, understanding metabolic heterogeneity at the single-cell level remains a challenge. Here we present 13C-SpaceM, a method for spatial single-cell isotope tracing that extends the previously published SpaceM method with detection of 13C6-glucose-derived carbons in esterified fatty acids. We validated 13C-SpaceM on spatially heterogeneous models using liver cancer cells subjected to either normoxia-hypoxia or ATP citrate lyase depletion. This revealed substantial single-cell heterogeneity in labelling of the lipogenic acetyl-CoA pool and in relative fatty acid uptake versus synthesis hidden in bulk analyses. Analysing tumour-bearing brain tissue from mice fed a 13C6-glucose-containing diet, we found higher glucose-dependent synthesis of saturated fatty acids and increased elongation of essential fatty acids in tumours compared with healthy brains. Furthermore, our analysis uncovered spatial heterogeneity in lipogenic acetyl-CoA pool labelling in tumours. Our method enhances spatial probing of metabolic activities in single cells and tissues, providing insights into fatty acid metabolism in homoeostasis and disease.
    DOI:  https://doi.org/10.1038/s42255-024-01118-4
  5. Nat Commun. 2024 Sep 11. 15(1): 7957
      Postprandial IL-1β surges are predominant in the white adipose tissue (WAT), but its consequences are unknown. Here, we investigate the role of IL-1β in WAT energy storage and show that adipocyte-specific deletion of IL-1 receptor 1 (IL1R1) has no metabolic consequences, whereas ubiquitous lack of IL1R1 reduces body weight, WAT mass, and adipocyte formation in mice. Among all major WAT-resident cell types, progenitors express the highest IL1R1 levels. In vitro, IL-1β potently promotes adipogenesis in murine and human adipose-derived stem cells. This effect is exclusive to early-differentiation-stage cells, in which the adipogenic transcription factors C/EBPδ and C/EBPβ are rapidly upregulated by IL-1β and enriched near important adipogenic genes. The pro-adipogenic, but not pro-inflammatory effect of IL-1β is potentiated by acute treatment and blocked by chronic exposure. Thus, we propose that transient postprandial IL-1β surges regulate WAT remodeling by promoting adipogenesis, whereas chronically elevated IL-1β levels in obesity blunts this physiological function.
    DOI:  https://doi.org/10.1038/s41467-024-51938-x
  6. J Lipid Res. 2024 Sep 06. pii: S0022-2275(24)00146-9. [Epub ahead of print] 100641
      A key organismal response to overnutrition involves the development of new adipocytes through the process of adipogenesis. Preadipocytes sense changes in the systemic nutrient status and metabolites can directly modulate adipogenesis. We previously identified a role of de novo nucleotide biosynthesis in adipogenesis induction, whereby inhibition of nucleotide biosynthesis suppresses the expression of the transcriptional regulators PPARγ and C/EBPα. Here, we set out to identify the global transcriptomic changes associated with the inhibition of nucleotide biosynthesis. Through RNA sequencing (RNAseq), we discovered that mitochondrial signatures were the most altered in response to inhibition of nucleotide biosynthesis. Blocking nucleotide biosynthesis induced rounded mitochondrial morphology, and altered mitochondrial function, and metabolism, reducing levels of tricarboxylic acid cycle intermediates, and increasing fatty acid oxidation (FAO). The loss of mitochondrial function induced by suppression of nucleotide biosynthesis was rescued by exogenous expression of PPARγ. Moreover, inhibition of FAO restored PPARγ expression, mitochondrial protein expression, and adipogenesis in the presence of nucleotide biosynthesis inhibition, suggesting a regulatory role of nutrient oxidation in differentiation. Collectively, our studies shed light on the link between substrate oxidation and transcription in cell fate determination.
    Keywords:  adipocytes; adipogenesis; fatty acid oxidation; lipid droplets; metabolism; nucleotides; purine; pyrimidine
    DOI:  https://doi.org/10.1016/j.jlr.2024.100641
  7. Nat Commun. 2024 Sep 12. 15(1): 7991
      Interactions between adipose tissue, liver and immune system are at the center of metabolic dysfunction-associated steatotic liver disease and type 2 diabetes. To address the need for an accurate in vitro model, we establish an interconnected microphysiological system (MPS) containing white adipocytes, hepatocytes and proinflammatory macrophages derived from isogenic human induced pluripotent stem cells. Using this MPS, we find that increasing the adipocyte-to-hepatocyte ratio moderately affects hepatocyte function, whereas macrophage-induced adipocyte inflammation causes lipid accumulation in hepatocytes and MPS-wide insulin resistance, corresponding to initiation of metabolic dysfunction-associated steatotic liver disease. We also use our MPS to identify and characterize pharmacological intervention strategies for hepatic steatosis and systemic insulin resistance and find that the glucagon-like peptide-1 receptor agonist semaglutide improves hepatocyte function by acting specifically on adipocytes. These results establish our MPS modeling the adipose tissue-liver axis as an alternative to animal models for mechanistic studies or drug discovery in metabolic diseases.
    DOI:  https://doi.org/10.1038/s41467-024-52258-w
  8. EMBO Rep. 2024 Sep 13.
      Osteoclasts are bone resorbing cells that are essential to maintain skeletal integrity and function. While many of the growth factors and molecular signals that govern osteoclastogenesis are well studied, how the metabolome changes during osteoclastogenesis is unknown. Using a multifaceted approach, we identified a metabolomic signature of osteoclast differentiation consisting of increased amino acid and nucleotide metabolism. Maintenance of the osteoclast metabolic signature is governed by elevated glutaminolysis. Mechanistically, glutaminolysis provides amino acids and nucleotides which are essential for osteoclast differentiation and bone resorption in vitro. Genetic experiments in mice found that glutaminolysis is essential for osteoclastogenesis and bone resorption in vivo. Highlighting the therapeutic implications of these findings, inhibiting glutaminolysis using CB-839 prevented ovariectomy induced bone loss in mice. Collectively, our data provide strong genetic and pharmacological evidence that glutaminolysis is essential to regulate osteoclast metabolism, promote osteoclastogenesis and modulate bone resorption in mice.
    Keywords:  Amino Acids; Glutaminolysis; Nucleotides; Osteoclast; Osteoporosis
    DOI:  https://doi.org/10.1038/s44319-024-00255-x
  9. Cancer Lett. 2024 Sep 11. pii: S0304-3835(24)00637-2. [Epub ahead of print] 217242
      Tumor cells often adapt to amino acid deprivation through metabolic rewiring, compensating for the loss with alternative amino acids/substrates. We have described such a scenario in leukemic cells treated with L-asparaginase (ASNase). Clinical effect of ASNase is based on nutrient stress achieved by its dual enzymatic action which leads to depletion of asparagine and glutamine and is accompanied with elevated aspartate and glutamate concentrations in serum of acute lymphoblastic leukemia patients. We showed that in these limited conditions glutamate uptake compensates for the loss of glutamine availability. Extracellular glutamate flux detection confirms its integration into the TCA cycle and its participation in nucleotide and glutathione synthesis. Importantly, it is glutamate-driven de novo synthesis of glutathione which is the essential metabolic pathway necessary for glutamate's pro-survival effect. In vivo findings support this effect by showing that inhibition of glutamate transporters enhances the therapeutic effect of ASNase. In summary, ASNase induces elevated extracellular glutamate levels under nutrient stress, which leads to a rewiring of intracellular glutamate metabolism and has a negative impact on ASNase treatment.
    DOI:  https://doi.org/10.1016/j.canlet.2024.217242
  10. Nat Commun. 2024 Sep 12. 15(1): 7976
      Cellular homeostasis depends on the supply of metabolic energy in the form of ATP and electrochemical ion gradients. The construction of synthetic cells requires a constant supply of energy to drive membrane transport and metabolism. Here, we provide synthetic cells with long-lasting metabolic energy in the form of an electrochemical proton gradient. Leveraging the L-malate decarboxylation pathway we generate a stable proton gradient and electrical potential in lipid vesicles by electrogenic L-malate/L-lactate exchange coupled to L-malate decarboxylation. By co-reconstitution with the transporters GltP and LacY, the synthetic cells maintain accumulation of L-glutamate and lactose over periods of hours, mimicking nutrient feeding in living cells. We couple the accumulation of lactose to a metabolic network for the generation of intermediates of the glycolytic and pentose phosphate pathways. This study underscores the potential of harnessing a proton motive force via a simple metabolic network, paving the way for the development of more complex synthetic systems.
    DOI:  https://doi.org/10.1038/s41467-024-52085-z
  11. iScience. 2024 Sep 20. 27(9): 110632
      The tumor microenvironment (TME) is characterized by a network of cancer cells, recruited immune cells, and extracellular matrix (ECM). However, the specific role of neutrophils during tumor development, and their interactions with other immune cells is still not well understood. Here, we use both standard well plate culture and an under oil microfluidic (UOM) assay with an integrated ECM bridge to elucidate how naive primary neutrophils respond to tumor cells. Our data demonstrated that tumor cells trigger cluster formation in neutrophils accompanied with the generation of reactive oxygen species (ROS) and neutrophil extracellular trap (NET) release. Using label-free optical metabolic imaging (OMI), we observed changes in the metabolic activities of primary neutrophils during the different clustering phases when challenged with tumor cells. Finally, our data demonstrates that neutrophils in direct contact, or in close proximity, with tumor cells exhibit greater metabolic activities compared to non-contact neutrophils.
    Keywords:  Cancer; Cell biology; Immunology; Microenvironment
    DOI:  https://doi.org/10.1016/j.isci.2024.110632
  12. Cell Stem Cell. 2024 Sep 05. pii: S1934-5909(24)00289-3. [Epub ahead of print]31(9): 1241-1243
      While the placenta regulates nutritional exchange between mother and fetus, Yu et al. reveal that human placental development is itself nutrient-sensitive. They elucidate entwined metabolic and epigenetic transitions driving syncytialization and pinpoint a requirement for the metabolite acetyl-CoA, which is sensitive to glucose metabolism.
    DOI:  https://doi.org/10.1016/j.stem.2024.08.003
  13. Trends Endocrinol Metab. 2024 Sep 09. pii: S1043-2760(24)00252-2. [Epub ahead of print]
      Accurate assessment of brown fat thermogenesis by non-invasive means remains challenging. Writing in Nature Metabolism, Cai et al. leverage the futile creatine cycling characteristic of thermogenic adipocytes to show that a type of magnetic resonance imaging (MRI) technique sensitive to endogenous creatine levels faithfully tracks brown fat thermogenesis in rodents and in humans.
    DOI:  https://doi.org/10.1016/j.tem.2024.08.013
  14. EMBO Mol Med. 2024 Sep 13.
      Defining the molecular mechanisms underlying cardiac resilience is crucial to find effective approaches to protect the heart. A physiologic level of ROS is produced in the heart by fatty acid oxidation, but stressful events can boost ROS and cause mitochondrial dysfunction and cardiac functional impairment. Melusin is a muscle specific chaperone required for myocardial compensatory remodeling during stress. Here we report that Melusin localizes in mitochondria where it binds the mitochondrial trifunctional protein, a key enzyme in fatty acid oxidation, and decreases it activity. Studying both mice and human induced pluripotent stem cell-derived cardiomyocytes, we found that Melusin reduces lipid oxidation in the myocardium and limits ROS generation in steady state and during pressure overload and doxorubicin treatment, preventing mitochondrial dysfunction. Accordingly, the treatment with the lipid oxidation inhibitor Trimetazidine concomitantly with stressful stimuli limits ROS accumulation and prevents long-term heart dysfunction. These findings disclose a physiologic mechanism of metabolic regulation in the heart and demonstrate that a timely restriction of lipid metabolism represents a potential therapeutic strategy to improve cardiac resilience to stress.
    Keywords:  Cardiac Metabolism; Chaperone Proteins; Doxorubicin; Pressure Overload; ROS
    DOI:  https://doi.org/10.1038/s44321-024-00132-z
  15. Circ Res. 2024 Sep 12.
      BACKGROUND: Salt sensitivity of blood pressure (SSBP), characterized by acute changes in blood pressure with changes in dietary sodium intake, is an independent risk factor for cardiovascular disease and mortality in people with and without hypertension. We previously found that elevated sodium concentration activates antigen-presenting cells (APCs), resulting in high blood pressure, but the mechanisms are unknown. Here, we hypothesized that APC-specific JAK2 (Janus kinase 2) through STAT3 (signal transducer and activator of transcription 3) and SMAD3 (small mothers against decapentaplegic homolog 3) contributes to SSBP.METHOD: We performed bulk or single-cell transcriptomic analyses following in vitro monocytes exposed to high salt and in vivo high sodium treatment in humans using a rigorous salt-loading/depletion protocol to phenotype SSBP. We also used a myeloid cell-specific CD11c+ JAK2 knockout mouse model and measured blood pressure with radiotelemetry after N-omega-nitro-L-arginine-methyl ester and a high salt diet treatment. We used flow cytometry for immunophenotyping and measuring cytokine levels. Fluorescence in situ hybridization and immunohistochemistry were performed to spatially visualize the kidney's immune cells and cytokine levels. Echocardiography was performed to assess cardiac function.
    RESULTS: We found that high salt treatment upregulates gene expression of the JAK/STAT/SMAD pathway while downregulating inhibitors of this pathway, such as suppression of cytokine signaling and cytokine-inducible SH2, in human monocytes. Expression of the JAK2 pathway genes mirrored changes in blood pressure after salt loading and depletion in salt-sensitive but not salt-resistant humans. Ablation of JAK2, specifically in CD11c+ APCs, attenuated salt-induced hypertension in mice with SSBP. Mechanistically, we found that SMAD3 acted downstream of JAK2 and STAT3, leading to increased production of highly reactive isolevuglandins and proinflammatory cytokine IL (interleukin)-6 in renal APCs, which activate T cells and increase production of IL-17A, IL-6, and TNF-α (tumor necrosis factor-alpha).
    CONCLUSIONS: Our findings reveal the APC JAK2 signaling pathway as a potential target for the diagnosis and treatment of SSBP in humans.
    Keywords:  Janus kinase 2; STAT3 transcription factor; Smad proteins; blood pressure; hypertension
    DOI:  https://doi.org/10.1161/CIRCRESAHA.124.323595
  16. Nat Commun. 2024 Sep 12. 15(1): 7662
      Most patients with advanced cancer develop cachexia, a multifactorial syndrome characterized by progressive skeletal muscle wasting. Despite its catastrophic impact on survival, the critical mediators responsible for cancer cachexia development remain poorly defined. Here, we show that a distinct subset of neutrophil-like monocytes, which we term cachexia-inducible monocytes (CiMs), emerges in the advanced cancer milieu and promotes skeletal muscle loss. Unbiased transcriptome analysis reveals that interleukin 36 gamma (IL36G)-producing CD38+ CiMs are induced in chronic monocytic blood cancer characterized by prominent cachexia. Notably, the emergence of CiMs and the activation of CiM-related gene signatures in monocytes are confirmed in various advanced solid cancers. Stimuli of toll-like receptor 4 signaling are responsible for the induction of CiMs. Genetic inhibition of IL36G-mediated signaling attenuates skeletal muscle loss and rescues cachexia phenotypes in advanced cancer models. These findings indicate that the IL36G-producing subset of neutrophil-like monocytes could be a potential therapeutic target in cancer cachexia.
    DOI:  https://doi.org/10.1038/s41467-024-51873-x
  17. Nat Commun. 2024 Sep 12. 15(1): 7940
      Dedifferentiated and Well-differentiated liposarcoma are characterized by a systematic amplification of the Murine Double Minute 2 (MDM2) oncogene. We demonstrate that p53-independent metabolic functions of chromatin-bound MDM2 are exacerbated in liposarcoma and mediate an addiction to serine metabolism to sustain tumor growth. However, the origin of exogenous serine remains unclear. Here, we show that elevated serine levels in mice harboring liposarcoma-patient derived xenograft, released by distant muscle is essential for liposarcoma cell survival. Repressing interleukine-6 expression, or treating liposarcoma cells with Food and Drugs Administration (FDA) approved anti-interleukine-6 monoclonal antibody, decreases de novo serine synthesis in muscle, impairs proliferation, and increases cell death in vitro and in vivo. This work reveals a metabolic crosstalk between muscle and liposarcoma tumor and identifies anti-interleukine-6 as a plausible treatment for liposarcoma patients.
    DOI:  https://doi.org/10.1038/s41467-024-51827-3
  18. Immunology. 2024 Sep 13.
      Gliotoxin (GT), a secondary metabolite and virulence factor of the fungal pathogen Aspergillus fumigatus, suppresses innate immunity and supports the suppression of host immune responses. Recently, we revealed that GT blocks the formation of the chemotactic lipid mediator leukotriene (LT)B4 in activated human neutrophils and monocytes, and in rodents in vivo, by directly inhibiting LTA4 hydrolase. Here, we elucidated the impact of GT on LTB4 biosynthesis and the entire lipid mediator networks in human M1- and M2-like monocyte-derived macrophages (MDMs) and in human tissue-resident alveolar macrophages. In activated M1-MDMs with high capacities to generate LTs, the formation of LTB4 was effectively suppressed by GT, connected to attenuated macrophage phagocytic activity as well as human neutrophil movement and migration. In resting macrophages, especially in M1-MDMs, GT elicited strong formation of prostaglandins, while bacterial exotoxins from Staphylococcus aureus evoked a broad spectrum of lipid mediator biosynthesis in both MDM phenotypes. We conclude that GT impairs functions of activated innate immune cells through selective suppression of LTB4 biosynthesis, while GT may also prime the immune system by provoking prostaglandin formation in macrophages.
    Keywords:  Aspergillus fumigatus; gliotoxin; leukotriene; lipid mediators; macrophages; prostaglandin
    DOI:  https://doi.org/10.1111/imm.13857
  19. Sci Rep. 2024 09 09. 14(1): 20932
      Fructose 1,6-bisphosphatase 2 (Fbp2) is a regulatory enzyme of gluco- and glyconeogenesis which, in the course of evolution, acquired non-catalytic functions. Fbp2 promotes cell survival during calcium stress, regulates glycolysis via inhibition of Hif-1α activity, and is indispensable for the formation of long-term potentiation in hippocampus. In hippocampal astrocytes, the amount of Fbp2 protein is reduced by signals delivered in neuronal extracellular vesicles (NEVs) through an unknown mechanism. The physiological role of Fbp2 (determined by its subcellular localization/interactions) depends on its oligomeric state and thus, we asked whether the cargo of NEVs is sufficient to change also the ratio of Fbp2 dimer/tetramer and, consequently, influence astrocyte basal metabolism. We found that the NEVs cargo reduced the Fbp2 mRNA level, stimulated the enzyme degradation and affected the cellular titers of different oligomeric forms of Fbp2. This was accompanied with increased glucose uptake and lactate release by astrocytes. Our results revealed that neuronal signals delivered to astrocytes in NEVs provide the necessary balance between enzymatic and non-enzymatic functions of Fbp2, influencing not only its amount but also subcellular localization. This may allow for the metabolic adjustments and ensure protection of mitochondrial membrane potential during the neuronal activity-related increase in astrocytic [Ca2+].
    Keywords:  Astrocytes; Crosstalk; Extracellular vesicles; Fructose 1,6-bisphosphatase; Glycolysis; Neurons
    DOI:  https://doi.org/10.1038/s41598-024-71560-7
  20. Nat Cell Biol. 2024 Sep 11.
      Ammonia is thought to be a cytotoxin and its increase in the blood impairs cell function. However, whether and how this toxin triggers cell death under pathophysiological conditions remains unclear. Here we show that ammonia induces a distinct form of cell death in effector T cells. We found that rapidly proliferating T cells use glutaminolysis to release ammonia in the mitochondria, which is then translocated to and stored in the lysosomes. Excessive ammonia accumulation increases lysosomal pH and results in the termination of lysosomal ammonia storage and ammonia reflux into mitochondria, leading to mitochondrial damage and cell death, which is characterized by lysosomal alkalization, mitochondrial swelling and impaired autophagic flux. Inhibition of glutaminolysis or blocking lysosomal alkalization prevents ammonia-induced T cell death and improves T cell-based antitumour immunotherapy. These findings identify a distinct form of cell death that differs from previously known mechanisms.
    DOI:  https://doi.org/10.1038/s41556-024-01503-x
  21. Cell Rep. 2024 Sep 10. pii: S2211-1247(24)01079-9. [Epub ahead of print]43(9): 114728
      Pyroptosis, a pro-inflammatory form of programmed cell death, is crucial for host defense against pathogens and danger signals. Proteolytic cleavage of gasdermin proteins B-E (GSDMB-GSDME) is well established as a trigger for pyroptosis, but the intracellular activation mechanism of GSDMA remains elusive. Here, we demonstrate that severe starvation induces pyroptosis through phosphorylation-induced activation of GSDMA. Nutrient stresses stimulate GSDMA activation via phosphorylation mediated by Unc-51-like autophagy-activating kinase 1 (ULK1). Phosphorylation of Ser353 on human GSDMA by ULK1 or the phospho-mimetic Ser353Asp mutant of GSDMA liberates GSDMA from auto-inhibition, facilitating its membrane targeting and initiation of pyroptosis. To further validate the significance of GSDMA phosphorylation, we generated a constitutively active mutant Ser354Asp of mouse Gsdma, which induced skin inflammation and hyperplasia in mice, reminiscent of phenotypes with activated Gsdma. This study uncovers phosphorylation of GSDMA as a mechanism underlying pyroptosis initiation and cellular response to nutrient stress.
    Keywords:  CP: Immunology; CP: Metabolism; GSDMA; ULK1; gastric cancer; phosphorylation; pyroptotic cell death; skin inflammation; starvation
    DOI:  https://doi.org/10.1016/j.celrep.2024.114728