bims-meprid Biomed News
on Metabolic-dependent epigenetic reprogramming in differentiation and disease
Issue of 2022‒06‒05
three papers selected by
Alessandro Carrer
Veneto Institute of Molecular Medicine


  1. Cancer Res. 2022 May 31. pii: canres.4052.2021. [Epub ahead of print]
      Effector CD8+ T cells rely primarily on glucose metabolism to meet their biosynthetic and functional needs. However, nutritional limitations in the tumor microenvironment can cause T cell hyporesponsiveness. Therefore, T cells must acquire metabolic traits enabling sustained effector function at the tumor site to elicit a robust anti-tumor immune response. Here, we report that IL-12-stimulated CD8+ T cells have elevated intracellular acetyl CoA levels and can maintain IFNγ levels in nutrient-deprived, tumour-conditioned media (TCM). Pharmacological and metabolic analyses demonstrated an active glucose-citrate-acetyl CoA circuit in IL-12-stimulated CD8+ T cells supporting an intracellular pool of acetyl CoA in an ATP-citrate lyase (ACLY)-dependent manner. Intracellular acetyl CoA levels enhanced histone acetylation, lipid synthesis, and IFNγ production, improving the metabolic and functional fitness of CD8+ T cells in tumors. Pharmacological inhibition or genetic knockdown of ACLY severely impaired IFNγ production and viability of CD8+ T cells in nutrient-restricted conditions. Furthermore, CD8+ T cells cultured in high pyruvate-containing media in vitro acquired critical metabolic features of IL-12-stimulated CD8+ T cells and displayed improved anti-tumor potential upon adoptive transfer in murine lymphoma and melanoma models. Overall, this study delineates the metabolic configuration of CD8+ T cells required for stable effector function in tumors and presents an affordable approach to promote the efficacy of CD8+ T cells for adoptive T cell therapy.
    DOI:  https://doi.org/10.1158/0008-5472.CAN-21-4052
  2. J Clin Invest. 2022 Jun 02. pii: e160852. [Epub ahead of print]
      Purine nucleoside phosphorylase (PNP) enables the breakdown and recycling of guanine nucleosides. PNP insufficiency in humans is paradoxically associated with both immunodeficiency and autoimmunity, but the mechanistic basis for these outcomes is incompletely understood. Here we identify two immune lineage-dependent consequences of PNP inactivation dictated by distinct gene interactions. During T cell development, PNP inactivation is synthetically lethal with down-regulation of the dNTP triphosphohydrolase SAMHD1. This interaction requires deoxycytidine kinase activity and is antagonized by microenvironmental deoxycytidine. In B lymphocytes and macrophages, PNP regulates Toll like receptor 7 signaling by controlling the levels of its (deoxy)guanosine nucleoside ligands. Overriding this regulatory mechanism promotes germinal center formation in the absence of exogenous antigen and accelerates disease in a mouse model of autoimmunity. This work reveals that one purine metabolism gene protects against immunodeficiency and autoimmunity via independent mechanisms operating in distinct immune lineages and identifies PNP as a novel metabolic immune checkpoint.
    Keywords:  Autoimmune diseases; Immunology; Immunotherapy; Metabolism; T cell development
    DOI:  https://doi.org/10.1172/JCI160852
  3. Signal Transduct Target Ther. 2022 Jun 03. 7(1): 171
      Mesenchymal stem cells (MSCs) delivered into the post-ischemic heart milieu have a low survival and retention rate, thus restricting the cardioreparative efficacy of MSC-based therapy. Chronic ischemia results in metabolic reprogramming in the heart, but little is known about how these metabolic changes influence implanted MSCs. Here, we found that excessive branched-chain amino acid (BCAA) accumulation, a metabolic signature seen in the post-ischemic heart, was disadvantageous to the retention and cardioprotection of intramyocardially injected MSCs. Discovery-driven experiments revealed that BCAA at pathological levels sensitized MSCs to stress-induced cell death and premature senescence via accelerating the loss of histone 3 lysine 9 trimethylation (H3K9me3). A novel mTORC1/DUX4/KDM4E axis was identified as the cause of BCAA-induced H3K9me3 loss and adverse phenotype acquisition. Enhancing BCAA catabolic capability in MSCs via genetic/pharmacological approaches greatly improved their adaptation to the high BCAA milieu and strengthened their cardioprotective efficacy. We conclude that aberrant BCAA accumulation is detrimental to implanted MSCs via a previously unknown metabolite-signaling-epigenetic mechanism, emphasizing that the metabolic changes of the post-ischemic heart crucially influence the fate of implanted MSCs and their therapeutic benefits.
    DOI:  https://doi.org/10.1038/s41392-022-00971-7