bims-meprid Biomed News
on Metabolic-dependent epigenetic reprogramming in differentiation and disease
Issue of 2023–07–09
two papers selected by
Alessandro Carrer, Veneto Institute of Molecular Medicine



  1. Cell Death Dis. 2023 Jul 06. 14(7): 401
      Sepsis involves endothelial cell (EC) dysfunction, which contributes to multiple organ failure. To improve therapeutic prospects, elucidating molecular mechanisms of vascular dysfunction is of the essence. ATP-citrate lyase (ACLY) directs glucose metabolic fluxes to de novo lipogenesis by generating acetyl-Co-enzyme A (acetyl-CoA), which facilitates transcriptional priming via protein acetylation. It is well illustrated that ACLY participates in promoting cancer metastasis and fatty liver diseases. Its biological functions in ECs during sepsis remain unclear. We found that plasma levels of ACLY were increased in septic patients and were positively correlated with interleukin (IL)-6, soluble E-selectin (sE-selectin), soluble vascular cell adhesion molecule 1 (sVCAM-1), and lactate levels. ACLY inhibition significantly ameliorated lipopolysaccharide challenge-induced EC proinflammatory response in vitro and organ injury in vivo. The metabolomic analysis revealed that ACLY blockade fostered ECs a quiescent status by reducing the levels of glycolytic and lipogenic metabolites. Mechanistically, ACLY promoted forkhead box O1 (FoxO1) and histone H3 acetylation, thereby increasing the transcription of c-Myc (MYC) to facilitate the expression of proinflammatory and gluco-lipogenic genes. Our findings revealed that ACLY promoted EC gluco-lipogenic metabolism and proinflammatory response through acetylation-mediated MYC transcription, suggesting ACLY as the potential therapeutic target for treating sepsis-associated EC dysfunction and organ injury.
    DOI:  https://doi.org/10.1038/s41419-023-05932-8
  2. Front Oncol. 2023 ;13 1169168
      Epigenetic modifications are chemical modifications that affect gene expression without altering DNA sequences. In particular, epigenetic chemical modifications can occur on histone proteins -mainly acetylation, methylation-, and on DNA and RNA molecules -mainly methylation-. Additional mechanisms, such as RNA-mediated regulation of gene expression and determinants of the genomic architecture can also affect gene expression. Importantly, depending on the cellular context and environment, epigenetic processes can drive developmental programs as well as functional plasticity. However, misbalanced epigenetic regulation can result in disease, particularly in the context of metabolic diseases, cancer, and ageing. Non-communicable chronic diseases (NCCD) and ageing share common features including altered metabolism, systemic meta-inflammation, dysfunctional immune system responses, and oxidative stress, among others. In this scenario, unbalanced diets, such as high sugar and high saturated fatty acids consumption, together with sedentary habits, are risk factors implicated in the development of NCCD and premature ageing. The nutritional and metabolic status of individuals interact with epigenetics at different levels. Thus, it is crucial to understand how we can modulate epigenetic marks through both lifestyle habits and targeted clinical interventions -including fasting mimicking diets, nutraceuticals, and bioactive compounds- which will contribute to restore the metabolic homeostasis in NCCD. Here, we first describe key metabolites from cellular metabolic pathways used as substrates to "write" the epigenetic marks; and cofactors that modulate the activity of the epigenetic enzymes; then, we briefly show how metabolic and epigenetic imbalances may result in disease; and, finally, we show several examples of nutritional interventions - diet based interventions, bioactive compounds, and nutraceuticals- and exercise to counteract epigenetic alterations.
    Keywords:  ageing; bioactive compounds; chronic diseases; epigenetics; metabolism
    DOI:  https://doi.org/10.3389/fonc.2023.1169168