bims-meprid Biomed News
on Metabolic-dependent epigenetic reprogramming in differentiation and disease
Issue of 2024–12–29
two papers selected by
Alessandro Carrer, Veneto Institute of Molecular Medicine



  1. Cancer Lett. 2024 Dec 24. pii: S0304-3835(24)00821-8. [Epub ahead of print] 217426
      Lipid metabolism reprogramming is critical for the initiation and progression of hepatocellular carcinoma (HCC). However, how the dysregulation of lipid metabolism contributes to HCC development remains largely unknown. Here, we report that the m6A reader YTHDC1-mediated epigenetic regulation of the long noncoding RNA NEAT1 activates stearoyl-CoA desaturase (SCD)-associated lipid metabolic processes during HCC progression. Mechanistically, histone lactylation in HCC induces increased expression of YTHDC1, increasing the stability of m6A-modified NEAT1. The histone acetyltransferase p300 is then recruited by NEAT1 and activates SCD by increasing the level of histone acetylation at the SCD promoter, thus facilitating HCC progression via hepatocellular lipid metabolism remodeling. Taken together, these discoveries suggest a close link between the epigenetic machinery and lipid metabolic abnormalities, which promotes cancer progression.
    Keywords:  Hepatocellular carcinoma; N(6)-methyladenosine; histone lactylation; lipid metabolism; long noncoding RNAs
    DOI:  https://doi.org/10.1016/j.canlet.2024.217426
  2. Cell Mol Life Sci. 2024 Dec 27. 82(1): 21
      Cytokine storm is a hallmark for acute systemic inflammatory disease like sepsis. Intrinsic microbiome-derived short-chain fatty acid (SCFAs) like acetate modulates immune cell function and metabolism has been well studied. However, it remains poorly investigated about the effects and the underlying mechanism of exogenous acetate in acute inflammation like sepsis. Here, we observed that serum acetate accumulates in patients undergoing abdominal gastrointestinal surgery and in septic mice. Short exposure to high-dose exogenous acetate protects mice from sepsis by inhibiting glycolysis in macrophages, both in vivo and in vitro. Hypoxia-inducible factor 1 subunit alpha (HIF-1α) stabilization or overexpression reverses the decreased glycolysis and pro-inflammatory cytokine production in macrophages and abrogates acetate's protective effect in septic mice. Meanwhile, we also found acetyl-CoA synthetase-2, but not GPR41 or GPR43, plays a key role in acetate's immunosuppressive effect. Acetate transiently increases acetyl-coenzyme A production, promoting histone acetylation and decreasing acetyl-transfer to NF-κB p65. These findings suggest that short exposure to mM-level acetate inhibits macrophage immune response linked to HIF-1α-dependent glycolysis. Taken together, we demonstrate short-term exposure of exogenous acetate could regulate inflammatory responses through attenuating HIF-1α-dependent glycolysis.
    Keywords:  Acetate; Glycolysis; HIF-1alpha; Inflammation; Macrophage
    DOI:  https://doi.org/10.1007/s00018-024-05521-8