Int J Mol Sci. 2025 Oct 11. pii: 9902. [Epub ahead of print]26(20):
Ferroptosis, an iron-dependent form of regulated cell death marked by lipid peroxidation, has emerged as a promising therapeutic target in breast cancer, particularly in aggressive subtypes such as triple-negative breast cancer (TNBC). This systematic review explores the molecular mechanisms underlying ferroptosis sensitivity and resistance, focusing on the interplay between iron metabolism, antioxidant defenses, and tumor microenvironmental factors. Literature retrieved from PubMed and Scopus up to May was analyzed in accordance with PRISMA guidelines, including mechanistic studies, preclinical experiments, and ongoing clinical trials. Findings reveal that breast cancer cells evade ferroptosis through enhanced glutathione synthesis, upregulation of GPX4 and system Xc- and adaptive metabolic reprogramming; yet these same mechanisms create exploitable vulnerabilities, including dependence on cystine, polyunsaturated lipids, and dysregulated iron handling. Therapeutic strategies that target key ferroptosis regulators, such as GPX4, ACSL4, and SLC7A11, or that harness agents like statins, sulfasalazine, and nanoparticle-based iron complexes demonstrate strong potential to overcome chemoresistance and selectively eliminate therapy-resistant cancer cell populations. Taken together, the evidence highlights ferroptosis as a critical Achilles' heel of breast cancer biology and supports further clinical translation of ferroptosis-inducing therapies to improve outcomes in otherwise refractory breast cancer subtypes.
Keywords: breast cancer; chemoresistance; ferroptosis; iron metabolism; lipid peroxidation; metabolic reprogramming; therapeutic targeting; triple-negative breast cancer; tumor microenvironment