bims-meract Biomed News
on Metabolic reprogramming and anti-cancer therapy
Issue of 2025–01–05
24 papers selected by
Andrea Morandi, Università degli Studi di Firenze



  1. Biochim Biophys Acta Rev Cancer. 2024 Dec 31. pii: S0304-419X(24)00189-6. [Epub ahead of print]1880(1): 189258
      Ferroptosis, a form of iron-dependent cell death driven by lipid peroxidation, has emerged as a critical area of research for cancer therapy. This review delves into the intricate relationship between lipid metabolism and ferroptosis, emphasizing the impact of lipidome remodeling on cancer cell susceptibility. We explore key mechanisms, such as the role of polyunsaturated fatty acids and phosphatidylethanolamines in ferroptosis induction, alongside the protective effects of monounsaturated fatty acids and their regulatory enzymes. We also discuss the influence of dietary fatty acids, lipid droplets, and the epithelial-to-mesenchymal transition on ferroptosis and cancer resistance. By integrating current findings on enzymatic regulation, lipid peroxidation pathways, and metabolic adaptations, this review highlights potential therapeutic strategies targeting lipid metabolism to enhance ferroptosis-based cancer treatments. Our goal is to provide a comprehensive overview that underscores the significance of lipid metabolic pathways in ferroptosis and their implications for developing novel cancer therapies.
    Keywords:  Ferroptosis; Lipid metabolism; Lipid peroxidation; Lipid remodeling; cancer
    DOI:  https://doi.org/10.1016/j.bbcan.2024.189258
  2. Biochim Biophys Acta Rev Cancer. 2024 Dec 31. pii: S0304-419X(24)00188-4. [Epub ahead of print] 189257
      Glutamine, akin to glucose, is a fundamental nutrient for human physiology. Tumor progression is often accompanied by elevated glutamine consumption, resulting in a disrupted nutritional balance and metabolic reprogramming within the tumor microenvironment. Furthermore, immune cells, which depend on glutamine for metabolic support, may experience functional impairments and dysregulation. Although the role of glutamine in tumors has been extensively studied, the specific impact of glutamine competition on immune responses, as well as the precise cellular alterations within immune cells, remains incompletely understood. In this review, we summarize the consequences of glutamine deprivation induced by tumor-driven glutamine uptake on immune cells, assessing the underlying mechanisms from the perspective of various components of the immune microenvironment. Additionally, we discuss the potential synergistic effects of glutamine supplementation and immunotherapy, offering insights into future research directions. This review provides compelling evidence for the integration of glutamine metabolism and immunotherapy as a promising strategy in cancer therapy.
    Keywords:  Glutamine deprivation; Glutamine therapy; Immune cells; Immunotherapy; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.bbcan.2024.189257
  3. Mol Metab. 2024 Dec 28. pii: S2212-8778(24)00220-5. [Epub ahead of print] 102089
      Cellular metabolism plays a pivotal role in the development and progression of pancreatic ductal adenocarcinoma (PDAC), with dysregulated metabolic pathways contributing to tumorigenesis and therapeutic resistance. Distinct metabolic heterogeneity exists in pancreatic cancer, impacting patient prognosis, as variations in metabolic profiles influence tumor behavior and treatment responses. Here, we review the intricate interplay between mitochondrial dynamics, mitophagy, and cellular metabolism in PDAC. We highlight the significance of mitophagy dysregulation in PDAC pathogenesis, impacting treatment response and prognosis. Additionally, we examine the impact of mitochondrial dynamics alterations on PDAC progression, focusing on the role of fission and fusion processes in tumorigenesis. Ongoing trials have demonstrated the potential therapeutic value of targeting key regulators of mitochondrial dynamics and mitophagy. Despite challenges, targeting mitochondrial metabolism offers diverse strategies to enhance PDAC treatment efficacy, underscoring its potential in advancing cancer therapeutics.
    Keywords:  Metabolism; Mitochondria; Mitophagy; Oxidative phosphorylation; Pancreatic cancer
    DOI:  https://doi.org/10.1016/j.molmet.2024.102089
  4. Biochim Biophys Acta Rev Cancer. 2024 Dec 30. pii: S0304-419X(24)00187-2. [Epub ahead of print] 189256
      The war between humanity and malignant tumors has been ongoing, with continuous advancements in classic chemotherapy and radiotherapy regimens, targeted drugs, endocrine therapy, and immunotherapy. However, tumor cells can develop primary or secondary resistance to these treatment options, making the issue of tumor resistance a major factor affecting patient prognosis and leading to recurrence. Estrogen-related receptors (ERRs) are members of the nuclear receptor superfamily, primarily involved in regulating glucose, lipid, and amino acid metabolism, serving as a central hub for intracellular energy metabolism. ERRs not only mediate insulin resistance but also participate in the mechanisms of drug resistance in various tumors, including breast cancer, osteosarcoma, endometrial cancer, lung cancer, and liver cancer, and even mediate resistance to radiation and immunotherapy. They mainly resist tumor treatment methods through metabolic reprogramming within cells, affecting mitochondrial energy metabolism, regulating metabolites such as cholesterol, glutamine, and lactate, or other signaling pathways, or by influencing the immune microenvironment. ERRs are promising targets for addressing the dilemma of tumor resistance. Currently, electrochemical luminescence biosensors for detecting ERRα in bodily fluids have been developed, making large-scale, low-cost detection of ERRα possible. Additionally, targeted inhibitors of ERRs have shown significant effects in suppressing cancer cell proliferation and reversing tumor resistance. This article reviews the research progress of ERRs in tumor resistance, providing important references for developing more effective anti-tumor treatment strategies.
    Keywords:  Energy metabolism; Estrogen-related receptors; Immunotherapy; Insulin resistance; Tumor resistance
    DOI:  https://doi.org/10.1016/j.bbcan.2024.189256
  5. Int J Biol Sci. 2025 ;21(1): 128-142
      Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer, and patients with the BRAFV600E mutation often exhibit aggressive tumor behavior. Here, we identified Arylsulfatase I (ARSI) as a gene whose expression was significantly upregulated in BRAFV600E PTC and was associated with poor prognosis. High ARSI expression correlated with advanced disease stage, BRAF mutation, and worse overall survival in PTC patients. Functional studies revealed that ARSI promoted the tumor growth, cell migration, and epithelial-mesenchymal transition (EMT) of BRAFV600E PTC cells in vitro. In vivo studies confirmed that ARSI suppression inhibited tumor growth and metastasis in mouse models of PTC. Mechanistically, ARSI knockdown triggered ferroptosis in BRAFV600E-mutant PTC cells and sensitized PTC cells to sorafenib-induced ferroptosis. Epiregulin (EREG) was identified as a downstream target of ARSI and is regulated by STAT3 transcriptional activation. EREG overexpression rescued the ferroptosis resistance and malignant phenotypes induced by ARSI knockdown in BRAFV600E-mutant PTC cells. Finally, we constructed a prognostic signature and diagnostic model based on ARSI and EREG expression data, which demonstrated high predictive value for identifying high-risk PTC patients with the BRAFV600E mutation. Our study highlights the critical role of ARSI in promoting aggressive phenotypes and therapeutic resistance in BRAFV600E PTC through ferroptosis regulation. Targeting the ARSI-EREG axis may offer novel therapeutic avenues for improving outcomes in BRAFV600E PTC patients.
    Keywords:  ARSI; BRAF; EREG; PTC; ferroptosis
    DOI:  https://doi.org/10.7150/ijbs.99423
  6. IUBMB Life. 2025 Jan;77(1): e2933
      Targeting the influencing factors in tumor growth and expansion in the tumor microenvironment is one of the key approaches to cancer immunotherapy. Various factors in the tumor microenvironment can in cooperation stimulate tumor growth, suppress anti-tumor immune responses, promote drug resistance, and ultimately enhance tumor recurrence. Therefore, due to the dependence and close cooperation of these axes, their combined targeting can have a greater effect compared to their individual targeting. Among the important factors affecting tumor growth in the tumor region, CD73 and EGFR play an important role in tumor growth by stimulating each other's expression and function. Therefore, we intended to use the nanocarriers that we had previously produced and characterized to deliver anti-CD73 and EGFR siRNAs to murine breast cancer 4T1 cells. Silencing CD73 and EGFR could significantly induce cell death in cancer cells. Downregulation of the CD73/EGFR axis also suppressed the migratory and proliferative potential of cancer cells. This therapeutic strategy also inhibited tumor growth in in ovo model. These findings imply that simultaneous targeting of CD73 and EGFR in breast cancer can be considered a novel immunotherapeutic approach that needs further investigation in future studies.
    Keywords:  4T1; CD73; EGFR; breast cancer; cancer therapy; nanoparticles
    DOI:  https://doi.org/10.1002/iub.2933
  7. Nat Commun. 2025 Jan 02. 16(1): 87
      Yes-associated protein (YAP) activation confers resistance to chemotherapy and targeted therapy. Methionine participates in cellular processes by converting to methyl donor for the methylation of DNA, RNA and protein. However, it remains unclear whether methionine affects drug resistance by influencing YAP activity. In this study, we report that methionine deprivation remarkably suppresses the transcriptional activity of YAP-TEAD in cancer cells. Methionine promotes PRMT1-catalyzed asymmetric dimethylation at R124 of YAP (YAP R124me2a). Mimicking of YAP methylation abolishes the reduction effect of methionine-restricted diet on YAP-induced drug resistance. YAP activates the transcription of SLC43A2, the methionine transporter, to increase methionine uptake in cancer cells. Knockdown of SLC43A2 decreases the level of YAP R124me2a. BCH, the inhibitor of SLC43A2, sensitizes tumors to anticancer drugs. Thus, our results unravel the positive feedback between YAP R124 methylation and SLC43A2 that contributes to anticancer drug resistance. Disrupting this positive feedback could be a potential strategy for cancer therapy.
    DOI:  https://doi.org/10.1038/s41467-024-55769-8
  8. Am J Mens Health. 2025 Jan-Feb;19(1):19(1): 15579883241310834
      This study aims to investigate the effect and mechanism of cyclosporine A (CsA) on paclitaxel-resistant prostate cancer cells. Paclitaxel-resistant prostate cancer cell lines were established by gradual increment method. The proliferation of cells was tested using MTT and colony formation assay. Western blot was used to detect protein expression. Expression levels of gene mRNA were detected using real-time polymerase chain reaction (RT-PCR). Xenografts in nude mice were used to validate the conclusion in vitro. The results showed that CsA could increase the sensitivity of prostate cancer cells to paclitaxel. Treatment of paclitaxel-resistant prostate cancer cell lines with CsA gradients decreased metadherin (MTDH) protein expression. RT-PCR showed that CsA could decrease the mRNA level of MTDH. Overexpression of MTDH in prostate cancer cells increases paclitaxel resistance in prostate cancer cells. Conversely, knockdown of MTDH reduced paclitaxel resistance in prostate cancer cells. Treating cells with CsA failed to reduce paclitaxel resistance in prostate cancer cells when MTDH was overexpressed. Xenografts in nude mice yielded consistent conclusions with the in vitro results. In conclusion, CsA can reduce the resistance of prostate cancer cells to paclitaxel. In vitro and in vivo experiments have shown that CsA can reduce paclitaxel resistance in prostate cancer cells by decreasing MTDH expression. In clinical practice, CsA can be used in combination with paclitaxel to improve the therapeutic effect on prostate cancer. MTDH may serve as a novel target for treating paclitaxel resistance in prostate cancer.
    Keywords:  MTDH; cyclosporine A; drug resistance; paclitaxel; prostate cancer
    DOI:  https://doi.org/10.1177/15579883241310834
  9. Adv Sci (Weinh). 2024 Dec 30. e2409329
      The anti-tumor efficacy of current pharmacotherapy is severely hampered due to the adaptive evolution of tumors, urgently needing effective therapeutic strategies capable of breaking such adaptability. Metabolic reprogramming, as an adaptive survival mechanism, is closely related to therapy resistance of tumors. Colorectal cancer (CRC) cells exhibit a high energy dependency that is sustained by an adaptive metabolic conversion between glucose and glutamine, helping tumor cells to withstand nutrient-deficient microenvironments and various treatments. We discover that transition metal vanadium (V) effectively inhibits glucose metabolism in CRC and synergizes with glutaminase inhibitors (BPTES) to disrupt CRC's energy dependency. Thus, a dual energy metabolism suppression nanosystem (VSi-BP@HA) is engineered by loading BPTES into V-doped hollow mesoporous silica nanoparticles. This nanosystem effectively dampens CRC energy metabolism, eradicating 33% of tumors in mice. Strikingly, the cell biological and preclinical model datasets provide compelling evidence showing that VSi-BP@HA not only reverses CRC cells chemo-resistance but also drastically potentiates anti-PD1 immunotherapy. Therefore, this nanosystem provides not only a promising approach to suppress CRC, but also a potential adjunct tool for enhancing chemotherapy and immunotherapy.
    Keywords:  enhancing chemotherapy and immunotherapy; glucose and glutamine; metabolic reprogramming; nanosystem; therapy resistance
    DOI:  https://doi.org/10.1002/advs.202409329
  10. J Transl Med. 2025 Jan 02. 23(1): 1
       BACKGROUND: Dysregulated energy metabolism has emerged as a defining hallmark of cancer, particularly evident in triple-negative breast cancer (TNBC). Distinct from other breast cancer subtypes, TNBC exhibits heightened glycolysis and aggressiveness. However, the transcriptional mechanisms of aerobic glycolysis in TNBC remains poorly understood.
    METHODS: The Cancer Genome Atlas (TCGA) cohort was utilized to identify genes associated with glycolysis. The role of FOSL1 in glycolysis and tumor growth in TNBC cells was confirmed through both loss-of-function and gain-of-function experiments. The subcutaneous xenograft model was established to evaluate the therapeutic potential of targeting FOSL1 in TNBC. Additionally, chromatin immunoprecipitation and luciferase reporter assays were employed to investigate the transcriptional regulation of glycolytic genes mediated by FOSL1.
    RESULTS: FOSL1 is identified as a pivotal glycolysis-related transcription factor in TNBC. Functional verification shows that FOSL1 enhances the glycolytic metabolism of TNBC cells, as evidenced by glucose uptake, lactate production, and extracellular acidification rates. Notably, FOSL1 promotes tumor growth in TNBC in a glycolysis-dependent manner, as inhibiting glycolysis with 2-Deoxy-D-glucose markedly diminishes the oncogenic effects of FOSL1 in TNBC. Mechanistically, FOSL1 transcriptionally activates the expression of genes such as SLC2A1, ENO1, and LDHA, which further accelerate the glycolytic flux. Moreover, FOSL1 is highly expressed in doxorubicin (DOX)-resistant TNBC cells and clinical samples from cases of progressive disease following neoadjuvant chemotherapy. Targeting FOSL1 proves effective in overcoming chemoresistance in DOX-resistant MDA-MB-231 cells.
    CONCLUSION: In summary, FOSL1 establishes a robust link between aerobic glycolysis and carcinogenesis, positioning it as a promising therapeutic target, especially in the context of TNBC chemotherapy.
    Keywords:  Drug resistance; Energy metabolism; Gene promoter; Glucose metabolism; Glucose transporter
    DOI:  https://doi.org/10.1186/s12967-024-06014-9
  11. Int J Mol Med. 2025 Mar;pii: 39. [Epub ahead of print]55(3):
      Iron metabolism plays a crucial role in the tumor microenvironment, influencing various aspects of cancer cell biology and tumor progression. This review discusses the regulatory mechanisms of iron metabolism within the tumor microenvironment and highlights how tumor cells and associated stromal cells manage iron uptake, accumulation and regulation. The sources of iron within tumors and the biological importance of ferroptosis in cancer were explored, focusing on its mechanisms, biological effects and, in particular, its tumor‑suppressive properties. Furthermore, the protective strategies employed by cancer cells to evade ferroptosis were examined. This review also delves into the intricate relationship between iron metabolism and immune modulation within the tumor microenvironment, detailing the impact on tumor‑associated immune cells and immune evasion. The interplay between ferroptosis and immunotherapy is discussed and potential strategies to enhance cancer immunotherapy by modulating iron metabolism are presented. Finally, the current ferroptosis‑based cancer therapeutic approaches were summarized and future directions for therapies that target iron metabolism were proposed.
    Keywords:  cancer immunotherapy; cancer therapy; ferroptosis; iron metabolism; tumor microenvironment
    DOI:  https://doi.org/10.3892/ijmm.2024.5480
  12. Theranostics. 2025 ;15(1): 68-85
      Rationale: Ferroptosis and sonodynamic therapy (SDT) are both promising therapeutic modalities, but their clinical application remains challenging due to the hypoxic tumor microenvironment and limited supply of polyunsaturated fatty acids. Developing an agent with oxygen-enhanced SDT and increased ferroptosis sensitivity is crucial for advancing tumor therapy. Methods: In this study, catalase (Cat) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) highly expressed 4T1 cells were constructed via lentivirus transfection. Cat and ACSL4 enriched exosomes (EXO@CA) were then extracted and loaded with the sonosensitizer tetrakis (4-carboxyphenyl) porphyrin (TCPP) through electroporation to create engineered exosomes (EXO@CAT). We evaluated the ability of EXO@CAT to generate oxygen in a hydrogen peroxide environment and investigated its effect on motion profiles and permeability of EXO@CAT. The in vitro antitumor activity was assessed via cytotoxicity, ROS levels, live/dead staining, and apoptosis, with ferroptosis biomarkers confirming ferroptosis activation. We also evaluated the in vivo anticancer efficacy of EXO@CAT by tumor growth analysis and histological and immunohistochemical staining in mouse models bearing breast tumor. Results: EXO@CAT harnesses ultrasound stimulation to facilitate oxygen-enriched SDT, demonstrating significant capacity for singlet oxygen (1O2) generating, which promotes the accumulation of lipid peroxidation (LPO), ultimately leading to the induction of ferroptosis. Concurrently, ACSL4 released from EXO@CAT also increases LPO accumulation by modifying cellular lipid composition, thereby enhancing cellular sensitivity to ferroptosis. Moreover, both in vitro and in vivo experiments demonstrate that the homologous targeting ability of EXO@CAT enables its efficient accumulation in tumor tissues, and the oxygen generation catalyzed by Cat not only alleviates tumor hypoxia but also facilitates the penetration of EXO@CAT into deeper layers of tumor tissue. Conclusions: EXO@CAT combines endogenous proteins, which are prone to inactivation, with an exogenous sonosensitizer, allowing synergistic anticancer treatment of both ferroptosis and SDT with improved efficacy.
    Keywords:  Active penetration; Engineered exosome; Ferroptosis; Sonodynamic therapy; Tumor microenvironment
    DOI:  https://doi.org/10.7150/thno.102977
  13. Nat Commun. 2024 Dec 30. 15(1): 10737
      Metaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane. Mechanistically, NOS blockade leads to a decrease in the S-nitrosylation of c-Jun NH2-terminal kinase (JNK)/c-Jun complex to repress its transcriptional output, leading to enhanced tumor differentiation and associated chemosensitivity. As a result, combined NOS and PI3K inhibition with taxane targets MpBC stem cells and improves survival in patient-derived xenograft models relative to single-/dual-agent therapy. Similarly, biopsies from MpBC tumors that responded to L-NMMA+taxane therapy showed a post-treatment reversal of epithelial-to-mesenchymal transition and decreased stemness. Our findings suggest that combined inhibition of iNOS and PI3K is a unique strategy to decrease chemoresistance and improve clinical outcomes in MpBC.
    DOI:  https://doi.org/10.1038/s41467-024-54651-x
  14. Int J Biol Sci. 2025 ;21(1): 382-399
      The EGFR-TKIs (epidermal growth factor receptor-tyrosine kinases inhibitors) offer significant benefits to lung cancer patients with sensitive EGFR mutations; however, the development of acquired resistance poses a significant challenge and leads to poor prognosis. Thus, exploring novel therapeutic strategies to overcome EGFR-TKI resistance is urgently needed. This study introduces an innovative approach utilizing folic acid-modified milk exosomes loaded with c-kit siRNA (FA-mExo-siRNA-c-kit) to target EGFR-TKI resistance in lung cancer. Initially, gefitinib-resistant lung cancer cells exhibited stemness characteristics, including an epithelial-to-mesenchymal transition phenotype and elevated ABCG2 expression, which were closely regulated by c-kit. Subsequent treatment with FA-mExo-siRNA-c-kit demonstrated effective suppression of c-kit expression and attenuation of stemness traits in vitro, reducing gefitinib resistance. In xenograft and liver metastasis models, sequential administration of FA-mExo-siRNA-c-kit and gefitinib resulted in decreased tumor growth and prolonged survival. Mechanistically, c-kit was found to regulate the AKT/mTOR/4EBP1/eIF4E axis, promoting stemness and gefitinib resistance in lung cancer cells. This study unveils a novel mechanism of EGFR-TKI resistance involving the c-kit/mTOR pathway and proposes a promising therapeutic strategy for EGFR-TKI-resistant lung cancer, particularly with liver metastasis, using FA-mExo-siRNA-c-kit, suggesting potential for improved patient outcomes and warranting further investigation.
    Keywords:  EGFR-TKIs resistance; c-kit; milk exosomes; non-small cell lung cancer; stemness
    DOI:  https://doi.org/10.7150/ijbs.99954
  15. Adv Sci (Weinh). 2024 Dec 30. e2412244
      Drug resistance is an important factor for prostate cancer (PCa) to progress into refractory PCa, and abnormal lipid metabolism usually occurs in refractory PCa, which presents great challenges for PCa therapy. Here, a cluster of differentiation 36 (CD36) inhibitor sulfosuccinimidyl oleate sodium (CD36i) and stearoyl-CoA desaturase 1 (SCD1) siRNA (siSCD1) are selected to inhibit lipid uptake and synthesis in PCa, respectively. To this end, a multiresponsive drug delivery nanosystem, HA@CD36i-TR@siSCD1 is designed. The hyaluronic acid (HA) gel "shell" of HA-TR nanosystem can release drugs in response to the acidic tumor microenvironment and hyaluronidase, and the tumor targeting (TR) cationic micellar "core" can release drugs in response to glutathione. This multiresponsive drug release is beneficial for the exogenous inhibition of lipid uptake by CD36i and the endogenous inhibition of lipid synthesis by siSCD1. The established HA-TR nanosystem has good tumor targeting ability and tumor penetration ability, and that HA@CD36i-TR@siSCD1 has good synergistic effects, which can significantly restrain the growth, invasion, and metastasis of PCa. Moreover, under high-fat conditions, the tumors are more sensitive to HA@CD36i-TR@siSCD1 treatment, almost no accumulation of lipid droplets is observed in HA@CD36i-TR@siSCD1-treated tumors, with enhanced antitumor immunity. Hence, this study provides a new treatment option for refractory PCa patients, especially those with a high-fat diet.
    Keywords:  CD36; SCD1; drug resistance; lipid metabolism; refractory prostate cancer
    DOI:  https://doi.org/10.1002/advs.202412244
  16. Fundam Clin Pharmacol. 2025 Feb;39(1): e13044
       BACKGROUND: The development of resistance to oxaliplatin is a multifaceted process, often involving modifications in drug transport, DNA repair mechanisms, and the ability of cells to evade drug-induced apoptosis.
    OBJECTIVE: To evaluate whether knocking down RFC3 promotes the sensitivity of colorectal cancer (CRC) cells to oxaliplatin, potentially offering a new approach to combat drug resistance.
    METHODS: siRNA-mediated knockdown of RFC3 was employed in colorectal cancer cell lines to assess the impact on oxaliplatin responsiveness. Cell viability assays, clonogenic survival assays, and flow cytometry were conducted to evaluate the effects on cell growth and apoptosis. Additionally, immunoblot analysis was used to scrutinize modifications in the expression of pivotal protein expression in the Wnt/β-catenin/GPX4 axis.
    RESULTS: RFC3 is highly expressed in CRC tissues and associated with prognosis. Knocking down RFC3 enhances the sensitivity of CRC cells to oxaliplatin. Additionally, the reduction of RFC3 promotes the susceptibility of chemoresistant tumor cells to oxaliplatin by inducing ferroptosis. Furthermore, the knockdown of RFC3 disrupts the Wnt/β-catenin/GPX4 axis.
    CONCLUSION: Depletion of RFC3 enhances the sensitivity of CRC cells to oxaliplatin via inducing ferroptosis.
    Keywords:  Ferroptosis; RFC3; Wnt/β‐catenin/GPX4; colorectal cancer (CRC); oxaliplatin
    DOI:  https://doi.org/10.1111/fcp.13044
  17. Cancer Immunol Immunother. 2025 Jan 03. 74(2): 71
      Microsatellite stable (MSS) colorectal cancer (CRC) is a subtype of CRC that generally exhibits resistance to immunotherapy, particularly immune checkpoint inhibitors such as PD-1 blockade. This study investigates the effects and underlying mechanisms of combining PD-1 blockade with IDO1 inhibition in MSS CRC. Bioinformatics analyses of TCGA-COAD and TCGA-READ cohorts revealed significantly elevated IDO1 expression in CRC tumors, correlating with tumor mutation burden across TCGA datasets. In vivo experiments demonstrated that the combination of IDO1 inhibition and PD-1 blockade significantly reduced tumor growth and increased immune cell infiltration, particularly pro-inflammatory macrophages and CD8+ T cells. IDO1 knockdown in CRC cell lines impaired tolerance to interferon-γ and increased apoptosis in vitro, which were rescued by the application of kynurenine, the end product of IDO1. IDO1 knockdown in MSS CRC enhanced the effectiveness of PD-1 blockade therapy in vivo. IDO1 knockdown cancer cells promoted pro-inflammatory macrophage polarization and enhanced phagocytic activity in vitro, associated with the upregulation of JAK2-STAT3-IL6 signaling pathway. These findings highlight the role of IDO1 in modulating the tumor immune microenvironment in MSS CRC and suggest that combining PD-1 blockade with IDO1 inhibition could enhance therapeutic efficacy by promoting macrophage pro-inflammatory polarization and infiltration through the JAK2-STAT3-IL6 pathway.
    Keywords:  IDO1; Immunotherapy; Macrophage polarization; Microsatellite stable colorectal cancer; PD-1 blockade
    DOI:  https://doi.org/10.1007/s00262-024-03925-w
  18. Nature. 2025 Jan 01.
      Lung metastases occur in up to 54% of patients with metastatic tumours1,2. Contributing factors to this high frequency include the physical properties of the pulmonary system and a less oxidative environment that may favour the survival of cancer cells3. Moreover, secreted factors from primary tumours alter immune cells and the extracellular matrix of the lung, creating a permissive pre-metastatic environment primed for the arriving cancer cells4,5. Nutrients are also primed during pre-metastatic niche formation6. Yet, whether and how nutrients available in organs in which tumours metastasize confer cancer cells with aggressive traits is mostly undefined. Here we found that pulmonary aspartate triggers a cellular signalling cascade in disseminated cancer cells, resulting in a translational programme that boosts aggressiveness of lung metastases. Specifically, we observe that patients and mice with breast cancer have high concentrations of aspartate in their lung interstitial fluid. This extracellular aspartate activates the ionotropic N-methyl-D-aspartate receptor in cancer cells, which promotes CREB-dependent expression of deoxyhypusine hydroxylase (DOHH). DOHH is essential for hypusination, a post-translational modification that is required for the activity of the non-classical translation initiation factor eIF5A. In turn, a translational programme with TGFβ signalling as a central hub promotes collagen synthesis in lung-disseminated breast cancer cells. We detected key proteins of this mechanism in lung metastases from patients with breast cancer. In summary, we found that aspartate, a classical biosynthesis metabolite, functions in the lung environment as an extracellular signalling molecule to promote aggressiveness of metastases.
    DOI:  https://doi.org/10.1038/s41586-024-08335-7
  19. Sci Rep. 2025 Jan 02. 15(1): 570
      Chemotherapy is an effective way to improve the prognosis of colorectal cancer patients, but patient resistance to chemotherapeutic agents is becoming a major obstacle to treatment. Nucleotide metabolism correlates with the progression of colorectal cancer and chemotherapy resistance, but the mechanisms involved need to be further investigated. We calculated the half-maximal inhibitory concentrations (IC50) of 5-Fluorouracil (5-FU) in colorectal cancer patients using the "oncopredict" package, screened nucleotide metabolism-related drug resistance genes, and constructed a risk score model. According to the Kaplan-Meier(KM) analysis, the overall survival (OS) and disease-free survival (PFS) of the high-risk group were significantly lower than those of the low-risk group. In addition, the nomogram we constructed had good performance in predicting OS in colon adenocarcinoma (COAD) patients. We validated NDUFA4L2 by cellular functionality experiments, animal tumorigenesis experiments and drug resistance experiments. It was demonstrated that NDUFA4L2 promoted the proliferation and migration of colon cancer cells, while the abnormal regulation of NDUFA4L2 affected the 5-FU resistance of colon cancer cells. In conclusion, we found that NDUFA4L2 promotes the progression and metastasis of colon cancer, as well as resistance to 5-FU chemotherapy.
    Keywords:  5-fluorouracil resistance; Colon cancer; NDUFA4L2; Nucleotide metabolism; Prognosis
    DOI:  https://doi.org/10.1038/s41598-024-84353-9
  20. Chem Biol Interact. 2024 Dec 31. pii: S0009-2797(24)00514-3. [Epub ahead of print] 111368
      Gastric cancer (GC) is a highly aggressive and heterogeneous malignancy. The process of ferroptosis regulates tumor growth and represents a promising therapeutic target for GCs. Despite Salidroside (Sal) being able to regulate ferroptosis in a variety of diseases, there are still limited reports on its therapeutic effects and potential targets in treating GC. This study aimed to investigate the potential mechanism of Sal-induced ferroptosis in GC. Our analysis, integrating databases like PharmMapper, Swiss Target Prediction, TargetNet, GeneCards, TTD, OMIM, STRING, and DAVID. Human gastric cancer MGC803 cells and tumor-bearing mice were used to evaluate the anti-tumor effect of Sal on GC in vitro and in vivo. CCK-8, LDH, and Calcein-AM/ PI were used to assess cell viability and damage. FerroOrange, Lillie's Ferrous Iron Stain, MDA, ROS, BODIPY™ 581/591 C11, GSH, and GPxs were used to detect intracellular Fe2+ concentration, lipid peroxidation level, and antioxidant defense system. qRT-PCR and western blot were performed to explore relevant mechanism studies. Network pharmacology results showed that Sal shares 322 targets with GC, which have biological functions related to lipid metabolism, cell death, and lipid peroxidation. Experiments further confirmed that Sal inhibits MGC803 cells by inducing ferroptosis, as evidenced by the induction of elevated Fe2+ and increased lipid peroxidation. Fer-1, an inhibitor of ferroptosis, reversed the anti-GC effect of Sal in MGC803 cells and GC tumor-bearing mice. Further confirmation of the association between Sal and ferroptosis in GC. Subsequently, bioinformatics and machine learning algorithms identified nuclear receptor coactivator 4 (NCOA4) as a candidate signature gene associated with ferroptosis in GC, and molecular docking shows that NCOA4 binds Sal. We then performed in vivo and in vitro experiments to elucidate that Sal targeting NCOA4, a cargo receptor mediating ferritinophagy, mediates autophagic degradation of ferritin heavy chain 1 (FTH1, Fe2+ storage protein), which further increases Fe2+ and lipid peroxidation. In addition, Sal induces mitochondrial dysfunction and increases mitochondrial ROS levels, which activates autophagy and triggers autophagic degradation of FTH1. Taken together, we revealed that NCOA4 is a new target for Sal-anchored GC and that Sal may be a potential therapeutic drug for the treatment of GC.
    Keywords:  Ferritinophagy; Ferroptosis; Gastric cancer; Mitochondrial dysfunction; NCOA4; Salidroside
    DOI:  https://doi.org/10.1016/j.cbi.2024.111368
  21. Clin Transl Med. 2025 Jan;15(1): e70162
      C1QBP exhibits heightened expression across a spectrum of tumours, thereby fostering their proliferation and metastasis, rendering it a pivotal therapeutic target. Nevertheless, to date, no pharmacological agents capable of directly targeting and inducing the degradation of C1QBP have been identified. In this study, we have unveiled a new peptide, PDBAG1, derived from the precursor protein GPD1, employing a peptidomics-based drug screening strategy. PDBAG1 has demonstrated substantial efficacy in suppressing triple-negative breast cancer (TNBC) both in vitro and in vivo. Its mechanism of action involves mitochondrial impairment and the inhibition of oxidative phosphorylation (OXPHOS), achieved through direct binding to C1QBP, thereby promoting its ubiquitin-dependent degradation. Concomitantly, due to metabolic adaptability, we have observed an up-regulation of glycolysis to compensate for OXPHOS inhibition. We observed an aberrant phenomenon wherein the hypoxia signalling pathway in tumour cells exhibited significant activation under normoxic conditions following PDBAG1 treatment. Through size-exclusion chromatography (SEC) and isothermal titration calorimetry (ITC) assays, we have validated that PDBAG1 is capable of binding C1QBP with a Kd value of 334 nM. Furthermore, PDBAG1 inhibits homologous recombination repair proteins and facilitates synergism with poly-ADP-ribose polymerase inhibitors in cancer therapy. This underscores that PDBAG1 ultimately induces insurmountable survival stress through multiple mechanisms while concurrently engendering therapeutic vulnerabilities specific to TNBC. KEY POINTS: The newly discovered peptide PDBAG1 is the first small molecule substance found to directly target and degrade C1QBP, demonstrating significant tumour inhibitory effects and therapeutic potential.
    Keywords:  C1QBP; anti‐tumour peptide; homologous recombination repair; mitochondrial function; targeted protein degradation
    DOI:  https://doi.org/10.1002/ctm2.70162
  22. Sci Rep. 2025 Jan 02. 15(1): 55
      As immune-checkpoint inhibitors (ICIs) therapy has made great strides in hepatocellular carcinoma (HCC) treatment, improving patient response to this strategy has become the main focus of research. Accumulating evidence has shown that m6A methylation plays a crucial role in the tumorigenesis and progression of HCC, while the precise impact of the m6A demethylase ALKBH5 on the tumor immune microenvironment (TIME) of HCC remains poorly defined. The clinical significance of ALKBH5 and TIM3 were evaluated in human HCC tissues. The biological function of ALKBH5 was analyzed in vitro and in vivo. The HCC molecular subtypes were identified based on key ALKBH5-regulated methylation-related genes (MRGs). The differences in survival, clinical features, TIME and immunotherapy response between these two subtypes were then evaluated. The regulation of ALKBH5 on TIM3 was detected by qPCR, western blotting and MeRIP. ALKBH5 was downregulated in HCC and associated with worse prognosis. ALKBH5 inhibited the proliferation and migration activities of HCC cells in vitro and in vivo. The HCC subtype with high expression of key MRGs was characterized by immunosuppression phenotypes and a worse response to ICIs. Moreover, TIM3 was identified as a target of ALKBH5. Upregulated TIM3 level was negatively correlated with survival in HCC. The results of this study suggest that ALKBH5 is an important regulator in HCC progression. ALKBH5 exerts its influence on the TIME and immunotherapy response by targeting TIM3 in HCC. This work provides new insight into the correlation between m6A modification and ICI response, which may help provide therapeutic benefits to HCC patients.
    Keywords:  ALKBH5; Hepatocellular carcinoma; Immunotherapy; TIM3; Tumor immune microenvironment
    DOI:  https://doi.org/10.1038/s41598-024-84050-7
  23. Theranostics. 2025 ;15(2): 521-545
      Ion channels, as functional molecules that regulate the flow of ions across cell membranes, have emerged as a promising target in cancer therapy due to their pivotal roles in cell proliferation, metastasis, apoptosis, drug resistance, and so on. Recently, increasing evidence suggests that dysregulation of ion channels is a common characteristic of cancer cells, contributing to their survival and the resistance to conventional therapies. For example, the aberrant expression of sodium (Na+) and potassium ion (K+) channels is significantly correlated with the sensitivity of chemotherapy drugs. The endogenous calcium (Ca2+) channels contribute to the acquired resistance of osimertinib in epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer cell lines. Ferrous ions (Fe2+) enhance the sensitivity of breast cancer cells to doxorubicin treatment. Preclinical models have also demonstrated the effect of specific ion channel blockers or modulators on anticancer drug resistance. This review describes the current understanding about the interaction between ion channels and the therapeutic efficacy of anticancer drugs. Then, the therapeutic potential of ion channel blockers or modulators in enhancing the sensitivity or overcoming the resistance of cancer cells to anticancer therapies is discussed. Targeting ion channels will hopefully offer a novel and promising strategy for overcoming cancer drug resistance.
    Keywords:  Cancer; Drug resistance.; Ion channels; Sensitization
    DOI:  https://doi.org/10.7150/thno.103384
  24. Nat Commun. 2025 Jan 02. 16(1): 164
      Eicosanoids are key players in inflammatory diseases and cancer. Targeting their production by inhibiting Group IVA cytosolic phospholipase A2 (cPLA2α) offers a promising approach for cancer therapy. In this study, we synthesize a second generation of thiazolyl ketone inhibitors of cPLA2α starting with compound GK470 (AVX235) and test their in vitro and cellular activities. We identify a more potent and selective lead molecule, GK420 (AVX420), which we test in parallel with AVX235 and a structurally unrelated compound, AVX002 for inhibition of cell viability across a panel of cancer cell lines. From this, we show that activity of polycomb group repressive complex 2 is a key molecular determinant of sensitivity to cPLA2α inhibition, while resistance depends on antioxidant response pathways. Consistent with these results, we show that elevated intracellular reactive oxygen species and activating transcription factor 4 target gene expression precede cell death in AVX420-sensitive T-cell acute lymphoblastic leukemia cells. Our findings imply cPLA2α may support cancer by mitigating oxidative stress and inhibiting tumor suppressor expression and suggest that AVX420 has potential for treating acute leukemias and other cancers that are susceptible to oxidative cell death.
    DOI:  https://doi.org/10.1038/s41467-024-55536-9