bims-mesote Biomed News
on Mesothelioma
Issue of 2024–05–12
three papers selected by
Laura Mannarino, Humanitas Research



  1. JTO Clin Res Rep. 2024 May;5(5): 100672
       Introduction: Malignant pleural mesothelioma (MPM) is a rare and universally lethal malignancy with limited treatment options. Immunotherapy with immune checkpoint inhibitors (ICIs) has recently been approved for unresectable MPM, but response to ICIs is heterogeneous, and reliable biomarkers for prospective selection of appropriate subpopulations likely to benefit from ICIs remain elusive.
    Methods: We performed multiscale integrative analyses of published primary tumor data set from The Cancer Genome Atlas (TCGA) and the French cohort E-MTAB-1719 to unravel the tumor immune microenvironment of MPM deficient in BAP1, one of the most frequently mutated tumor suppressor genes (TSGs) in the disease. The molecular profiling results were validated in independent cohorts of patients with MPM using immunohistochemistry and multiplex immunohistochemistry.
    Results: We revealed that BAP1 deficiency enriches immune-associated pathways in MPM, leading to increased mRNA signatures of interferon alfa/gamma response, activating dendritic cells, immune checkpoint receptors, and T-cell inflammation. This finding was confirmed in independent patient cohorts, where MPM tumors with low BAP1 levels are associated with an inflammatory tumor immune microenvironment characterized by increased exhausted precursor T-cells and macrophages but decreased myeloid-derived suppressor cells (MDSCs). In addition, BAP1low MPM cells are in close proximity to T cells and therefore can potentially be targeted with ICIs. Finally, we revealed that BAP1-proficient MPM is associated with a hyperactive mitogen-activated protein kinase (MAPK) pathway and may benefit from treatment with MEK inhibitors (MEKis).
    Conclusion: Our results suggest that BAP1 plays an immunomodulatory role in MPM and that BAP1-deficient MPM may benefit from immunotherapy, which merits further clinical investigation.
    Keywords:  BAP1; Biomarker; Immune checkpoint inhibitors; Mesothelioma; Tumor immune microenvironment (TIME)
    DOI:  https://doi.org/10.1016/j.jtocrr.2024.100672
  2. Cancer Lett. 2024 May 08. pii: S0304-3835(24)00343-4. [Epub ahead of print] 216950
      Malignant pleural mesothelioma is a rare and lethal cancer caused by exposure to asbestos. The highly inflammatory environment caused by fibers accumulation forces cells to undergo profound adaptation to gain survival advantages. Prioritizing the synthesis of essential transcripts is an efficient mechanism coordinated by multiple molecules, including long non-coding RNAs. Enhancing the knowledge about these mechanisms is an essential weapon in combating mesothelioma. Linc00941 correlates to bad prognosis in various cancers, but it is reported to partake in distinct and apparently irreconcilable processes. In this work, we report that linc00941 supports the survival and aggressiveness of mesothelioma cells by influencing protein synthesis and ribosome biogenesis. Linc00941 binds to the translation initiation factor eIF4G, promoting the selective protein synthesis of cMYC, which, in turn, enhances the expression of key genes involved in translation. We analyzed a retrospective cohort of 97 mesothelioma patients' samples from our institution, revealing that linc00941 expression strongly correlates with reduced survival probability. This discovery clarifies linc00941's role in mesothelioma and proposes a unified mechanism of action for this lncRNA involving the selective translation of essential oncogenes, reconciling the discrepancies about its function.
    Keywords:  cMYC; lncRNA; mesothelioma; protein synthesis; translation
    DOI:  https://doi.org/10.1016/j.canlet.2024.216950