Se Pu. 2024 Feb;42(2): 120-130
Environmental factors, such as environmental pollutants, behaviors, and lifestyles, are the leading causes of chronic noncommunicable diseases. Estimates indicate that approximately 50% of all deaths worldwide can be attributed to environmental factors. The exposome is defined as the totality of human environmental (i.e., all nongenetic) exposures from conception, including general external exposure (e.g., climate, education, and urban environment), specific external exposure (e.g., pollution, physical activity, and diet), and internal exposure (e.g., metabolic factors, oxidative stress, inflammation, and protein modification). As a new paradigm, this concept aims to comprehensively understand the link between human health and environmental factors. Therefore, a comprehensive measurement of the exposome, including accurate and reliable measurements of exposure to the external environment and a wide range of biological responses to the internal environment, is of great significance. The measurement of the general external exposome depends on advances in environmental sensors, personal-sensing technologies, and geographical information systems. The determination of exogenous chemicals to which individuals are exposed and endogenous chemicals that are produced or modified by external stressors relies on improvements in methodology and the development of instrumental approaches, including colorimetric, chromatographic, spectral, and mass-spectrometric methods. This article reviews the research strategies for chemical exposomes and summarizes existing exposome-measurement methods, focusing on mass spectrometry (MS)-based methods. The top-down and bottom-up approaches are commonly used in exposome studies. The bottom-up approach focuses on the identification of chemicals in the external environment (e.g., soil, water, diet, and air), whereas the top-down approach focuses on the evaluation of endogenous chemicals and biological processes in biological samples (e.g., blood, urine, and serum). Low- and high-resolution MS (LRMS and HRMS, respectively) have become the most popular methods for the direct measurement of exogenous and endogenous chemicals owing to their superior sensitivity, specificity, and dynamic range. LRMS has been widely applied in the targeted analysis of expected chemicals, whereas HRMS is a promising technique for the suspect and unknown screening of unexpected chemicals. The development of MS-based multiomics, including proteomics, metabolomics, epigenomics, and spatial omics, provides new opportunities to understand the effects of environmental exposure on human health. Metabolomics involves the sum of all low-molecular-weight metabolites in a living system. Nontargeted metabolomics can measure both endogenous and exogenous chemicals, which would directly link exposure to biological effects, internal dose, and disease pathobiology, whereas proteomics could play an important role in predicting potential adverse health outcomes and uncovering molecular mechanisms. MS imaging (MSI) is an emerging technique that provides unlabeled in-depth measurements of endogenous and exogenous molecules directly from tissue and cell sections without changing their spatial information. MSI-based spatial omics, which has been widely applied in biomarker discovery for clinical diagnosis, as well as drug and pollutant monitoring, is expected to become an effective method for exposome measurement. Integrating these response measurements from metabolomics, proteomics, spatial omics, and epigenomics will enable the generation of new hypotheses to discover the etiology of diseases caused by chemical exposure. Finally, we highlight the major challenges in achieving chemical exposome measurements.
Keywords: expotomics; mass spectrometry (MS); mass spectrometry imaging (MSI); metabolomics; proteomics; review