bims-mevinf Biomed News
on Metabolism in viral infections
Issue of 2024–09–22
four papers selected by
Alexander Ivanov, Engelhardt Institute of Molecular Biology



  1. Anim Cells Syst (Seoul). 2024 ;28(1): 466-480
      Hepatitis B virus (HBV) is a sex-specific pathogen that is more severe in males than in females. Sex disparities in HBV infection have been attributed to hormonal differences between males and females. However, whether HBV infection affects the metabolic signatures of steroid hormones and how these influences viral replication remains unclear. In this study, we investigated whether HBV infection alters steroid metabolism and its effects on HBV replication. Serum samples from male and female mice obtained after the hydrodynamic injection of replication-competent HBV plasmids were subjected to quantitative steroid profiling. Serum steroid levels in mice were analyzed using an in vitro metabolism assay with the mouse liver S9 fraction. The alteration of steroids by HBV infection was observed only in male mice, particularly with significant changes in androgens, whereas no significant hormonal changes were observed in female mice. Among the altered steroids, dehydroepiandrosterone (DHEA) levels increased the most in male mice after HBV infection. An in vitro metabolism assay revealed that androgen levels were significantly reduced in HBV-infected male mice. Furthermore, the genes involved in DHEA biosynthesis were significantly upregulated in HBV-infected male mice. Interestingly, reduced dihydrotestosterone in male mice significantly inhibits viral replication by suppressing HBV promoter activity, suggesting a viral strategy to overcome the antiviral effects of steroid hormones in males. Our data demonstrated that HBV infection can cause sex-specific changes in steroid metabolism.
    Keywords:  Hepatitis B virus (HBV); androgens; dihydrotestosterone; gender-specific alteration; steroid profiling
    DOI:  https://doi.org/10.1080/19768354.2024.2403569
  2. Microbiol Spectr. 2024 Sep 17. e0083624
      Pathogen infections remain a significant public health problem worldwide. Accumulating evidence regarding the crosstalk between bile acid (BA) metabolism and immune response reveals that BA metabolism regulates host immunity and microbial pathogenesis, making it an attractive target for disease prevention and infection control. However, the effect of infection on circulating BA profiles, the biosynthesis-related enzymes, and their receptors remains to be depicted. Here, we investigated the effect of viral (vesicular stomatitis virus, VSV) and bacterial (lipopolysaccharide, LPS) infections on BA metabolism and signaling. Infection models were successfully established by intraperitoneally injecting VSV and LPS, respectively. VSV and LPS injection significantly changed the circulating BA profiles, with highly increased levels of taurine-conjugated BAs and significant decreases in unconjugated BAs. Consistent with the decreased levels of circulating cholic acid (CA) and chenodeoxycholic acid (CDCA), the expression of BA biosynthesis-related rate-limiting enzymes (Cyp7a1, Cyp27a1, Cyp8b1, and Hsd3b7) were significantly reduced. Furthermore, hepatic and pulmonary BA receptors (BARs) expression varied in different infection models. LPS treatment had an extensive impact on tested hepatic and pulmonary BARs, resulting in the upregulation of TGR5, S1PR2, and VDR, while VSV infection only promoted VDR expression. Our study provides insights into the involvement of BA metabolism in the pathophysiology of infection, which may provide potential clues for targeting BA metabolism and BAR signaling to boost innate immunity and control infection.
    IMPORTANCE: This study focuses on the crosstalk between bile acid (BA) metabolism and immune response in VSV infection and LPS treatment models and depicts the effect of infection on circulating BA profiles, the biosynthesis-related enzymes, and their receptors. These findings provide insights into the effect of infection on BA metabolism and signaling, adding a more comprehensive understanding to the relationship between infection, BA metabolism and immune responses.
    Keywords:  LPS treatment; VSV infection; bile acid biosynthesis; bile acid profiles; bile acid receptors
    DOI:  https://doi.org/10.1128/spectrum.00836-24
  3. Int J Cancer. 2024 Sep 18.
      The Epstein-Barr virus (EBV), the first identified human tumour virus, infects over 95% of the individuals globally and has the potential to induce different types of cancers. It is increasingly recognised that EBV infection not only alters cellular metabolism, contributing to neoplastic transformation, but also utilises several non-cell autonomous mechanisms to shape the metabolic milieu in the tumour microenvironment (TME) and its constituent stromal and immune cells. In this review, we explore how EBV modulates metabolism to shape the interactions between cancer cells, stromal cells, and immune cells within a hypoxic and acidic TME. We highlight how metabolites resulting from EBV infection act as paracrine factors to regulate the TME, and how targeting them can disrupt barriers to immunotherapy.
    Keywords:  EBV‐associated malignancies; Epstein–Barr virus; nasopharyngeal cancer; tumour metabolism; tumour microenvironment
    DOI:  https://doi.org/10.1002/ijc.35192
  4. Front Microbiol. 2024 ;15 1430052
      Previous studies demonstrated that EV71-infected cells secrete extracellular vesicles (EVs), facilitating the transfer of viral components to recipient cells and thereby promoting virus spread. Considering lipid signaling plays a crucial role in EVs-mediated cell-to-cell communication, we compared the lipid profile of EVs secreted from uninfected and EV71-infected cells (EVs-Mock and EVs-EV71) using the human rhabdomyosarcoma (RD) cell model. These two groups of EVs were purified by using size exclusion chromatography (SEC), respectively, and evaluated by transmission electron microscopy (TEM), nanoparticle tracking technology (NTA), and Western blotting (WB). In-depth lipidomic analysis of EVs identified 1705 lipid molecules belonging to 43 lipid classes. The data showed a significant increase in the lipid content of EVs after EV71 infection. Meanwhile, we deeply analyzed the changes in lipids and screened for lipid molecules with significant differences compared EVs-EV71 with EVs-Mock EVs. Altogether, we report the alterations in the lipid profile of EVs derived from RD-cells after EV71 infection, which may affect the function of the EVs in the recipient cells.
    Keywords:  EV71; SEC; extracellular vesicles; lipid; lipidomics
    DOI:  https://doi.org/10.3389/fmicb.2024.1430052