Exp Hematol. 2021 Mar 06. pii: S0301-472X(21)00095-3. [Epub ahead of print]
Mitochondria are not only essential for cell metabolism and energy supply but they are also engaged in calcium homeostasis, reactive oxygen species generation and play a key role in apoptosis. As a consequence, functional mitochondria disorders are involved in many human cancers including acute myeloid leukemia (AML). However, very little data are available about the deregulation of their number and/or shape in leukemic cells, despite the evident link between ultrastructure and function. In this context, we analyzed the ultrastructural mitochondrial parameters (number per cell, mitochondria area, number of cristae/mitochondria, cristae thickness) in five leukemia cell lines (HEL, HL60, K562, KG1 and OCI-AML3) together with the functional assay of their respiratory profile. First of all, we show significant differences within basal respiration, maximal respiration, ATP production and spare respiratory capacity between our cell lines, confirming the various respiratory profiles between leukemia subtypes. Second, we highlight that these variations were obviously associated with significant inter-leukemia heterogeneity of the number and/or shape of mitochondria. For instance, KG1 characterized by the lowest number of mitochondria together with reduced cristae diameter displayed a very particularly deficient respiratory profile. In comparison, HEL and K562, both cell lines with high respiratory profiles, harbored the highest number of mitochondria/cells with high cristae diameters. Moreover, we show that K562, carrying ASXL1 mutation, presents significant mitochondria-endoplasmic reticulum (ER) deficiency by the decrease of the number of matrix granules, Mitochondria-associated Endoplasmic Reticulum membranes (MAMs) and Mitochondrial-derived vesicles (MDVs) precursors, which are implicated in the regulatory pathways of cell mortality via the process of mitophagy and of calcium homeostasis. On the opposite, HL60 carried high levels of matrix granules and MAMs together with a higher sensitivity to drug targeting mitochondria (Rotenone/Antimycine). We confirm the implication of ASXL1 mutation in this mitochondria dysregulation through the study of transcripts expression (from 415 patients coming from public data) involved in three mitochondria pathways i) the ER-mitochondria contacts (MAM), ii) matrix granules homeostasis, iii) MDVs precursors production. Altogether, our study offers new and original data on mitochondria structural alterations linked to deregulation of respiration profiles in AMLs and some genetic characteristics, suggesting that modifications of mitochondria shape and/or number in leukemic cells participate in chemoresistance and could be a targeted mechanism to regulate their proliferative potential.
Keywords: ASXL1 mutation; Mitochondria; endoplasmic reticulum stress; leukemia cell lines; matrix granules; mitochondria-associated endoplasmic reticulum membrane; mitochondrial respiration; mitochondrial-derived vesicles; transmission electron microscopy