bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2023–05–14
28 papers selected by
Kelsey Fisher-Wellman, East Carolina University



  1. Acta Physiol (Oxf). 2023 May 12. e13985
       AIM: A functional proteome is essential for life and maintained by protein quality control (PQC) systems in the cytosol and organelles. Protein aggregation is an indicator of a decline of PQC linked to aging and disease. Mitochondrial PQC is critical to maintain mitochondrial function and thus cellular fitness. How mitochondria handle aggregated proteins is not well understood. Here we tested how the metabolic status impacts on formation and clearance of aggregates within yeast mitochondria and assessed which proteins are particularly sensitive to denaturation.
    METHODS: Confocal microscopy, electron microscopy, immunoblotting and genetics were applied to assess mitochondrial aggregate handling in response to heat shock and ethanol, using the mitochondrial disaggregase Hsp78 as a marker for protein aggregates.
    RESULTS: We show that aggregates formed upon heat or ethanol stress with different dynamics depending on the metabolic state. While fermenting cells displayed numerous small aggregates that coalesced into one large foci that was resistant to clearance, respiring cells showed less aggregates and cleared these aggregates more efficiently. Acute inhibition of mitochondrial translation had no effect, while preventing protein import into mitochondria by inhibition of cytosolic translation prevented aggregate formation.
    CONCLUSION: Collectively, our data show that the metabolic state of the cells impacts the dynamics of aggregate formation and clearance, and that mainly newly imported and not yet assembled proteins are prone to form aggregates. Because mitochondrial functionality is crucial for cellular metabolism, these results highlight the importance of efficient protein biogenesis to maintain the mitochondrial proteome operational during metabolic adaptations and cellular stress.
    Keywords:  Ageing; Aggregates; Cellular stress; Hsp78; Metabolism; Mitochondria; Protein quality control; Proteostasis
    DOI:  https://doi.org/10.1111/apha.13985
  2. EMBO Mol Med. 2023 May 09. e16910
      MYC is a key oncogenic driver in multiple tumor types, but concomitantly endows cancer cells with a series of vulnerabilities that provide opportunities for targeted pharmacological intervention. For example, drugs that suppress mitochondrial respiration selectively kill MYC-overexpressing cells. Here, we unravel the mechanistic basis for this synthetic lethal interaction and exploit it to improve the anticancer effects of the respiratory complex I inhibitor IACS-010759. In a B-lymphoid cell line, ectopic MYC activity and treatment with IACS-010759 added up to induce oxidative stress, with consequent depletion of reduced glutathione and lethal disruption of redox homeostasis. This effect could be enhanced either with inhibitors of NADPH production through the pentose phosphate pathway, or with ascorbate (vitamin C), known to act as a pro-oxidant at high doses. In these conditions, ascorbate synergized with IACS-010759 to kill MYC-overexpressing cells in vitro and reinforced its therapeutic action against human B-cell lymphoma xenografts. Hence, complex I inhibition and high-dose ascorbate might improve the outcome of patients affected by high-grade lymphomas and potentially other MYC-driven cancers.
    Keywords:  MYC; ROS; lymphoma; mitochondria; targeted therapy
    DOI:  https://doi.org/10.15252/emmm.202216910
  3. J Cell Biol. 2023 Jul 03. pii: e202210019. [Epub ahead of print]222(7):
      Mitochondria critically rely on protein import and its tight regulation. Here, we found that the complex I assembly factor NDUFAF8 follows a two-step import pathway linking IMS and matrix import systems. A weak targeting sequence drives TIM23-dependent NDUFAF8 matrix import, and en route, allows exposure to the IMS disulfide relay, which oxidizes NDUFAF8. Import is closely surveyed by proteases: YME1L prevents accumulation of excess NDUFAF8 in the IMS, while CLPP degrades reduced NDUFAF8 in the matrix. Therefore, NDUFAF8 can only fulfil its function in complex I biogenesis if both oxidation in the IMS and subsequent matrix import work efficiently. We propose that the two-step import pathway for NDUFAF8 allows integration of the activity of matrix complex I biogenesis pathways with the activity of the mitochondrial disulfide relay system in the IMS. Such coordination might not be limited to NDUFAF8 as we identified further proteins that can follow such a two-step import pathway.
    DOI:  https://doi.org/10.1083/jcb.202210019
  4. bioRxiv. 2023 Apr 28. pii: 2023.04.26.538295. [Epub ahead of print]
      The mitochondrial uniporter (MCU) Ca 2+ ion channel represents the primary means for Ca 2+ uptake into mitochondria. Here we employed in vitro and in vivo models with MCU genetically eliminated to understand how MCU contributes to tumor formation and progression. Transformation of primary fibroblasts in vitro was associated with increased MCU expression, enhanced mitochondrial Ca 2+ uptake, suppression of inactivating-phosphorylation of pyruvate dehydrogenase, a modest increase of basal mitochondrial respiration and a significant increase of acute Ca 2+ -dependent stimulation of mitochondrial respiration. Inhibition of mitochondrial Ca 2+ uptake by genetic deletion of MCU markedly inhibited growth of HEK293T cells and of transformed fibroblasts in mouse xenograft models. Reduced tumor growth was primarily a result of substantially reduced proliferation and fewer mitotic cells in vivo , and slower cell proliferation in vitro associated with delayed progression through S-phase of the cell cycle. MCU deletion inhibited cancer stem cell-like spheroid formation and cell invasion in vitro , both predictors of metastatic potential. Surprisingly, mitochondrial matrix Ca 2+ concentration, membrane potential, global dehydrogenase activity, respiration and ROS production were unchanged by genetic deletion of MCU in transformed cells. In contrast, MCU deletion elevated glycolysis and glutaminolysis, strongly sensitized cell proliferation to glucose and glutamine limitation, and altered agonist-induced cytoplasmic Ca 2+ signals. Our results reveal a dependence of tumorigenesis on MCU, mediated by a reliance on mitochondrial Ca 2+ uptake for cell metabolism and Ca 2+ dynamics necessary for cell-cycle progression and cell proliferation.
    DOI:  https://doi.org/10.1101/2023.04.26.538295
  5. Nat Cancer. 2023 May 11.
      The transfer of intact mitochondria between heterogeneous cell types has been confirmed in various settings, including cancer. However, the functional implications of mitochondria transfer on tumor biology are poorly understood. Here we show that mitochondria transfer is a prevalent phenomenon in glioblastoma (GBM), the most frequent and malignant primary brain tumor. We identified horizontal mitochondria transfer from astrocytes as a mechanism that enhances tumorigenesis in GBM. This transfer is dependent on network-forming intercellular connections between GBM cells and astrocytes, which are facilitated by growth-associated protein 43 (GAP43), a protein involved in neuron axon regeneration and astrocyte reactivity. The acquisition of astrocyte mitochondria drives an increase in mitochondrial respiration and upregulation of metabolic pathways linked to proliferation and tumorigenicity. Functionally, uptake of astrocyte mitochondria promotes cell cycle progression to proliferative G2/M phases and enhances self-renewal and tumorigenicity of GBM. Collectively, our findings reveal a host-tumor interaction that drives proliferation and self-renewal of cancer cells, providing opportunities for therapeutic development.
    DOI:  https://doi.org/10.1038/s43018-023-00556-5
  6. EMBO J. 2023 May 10. e112767
      To maintain both mitochondrial quality and quantity, cells selectively remove damaged or excessive mitochondria through mitophagy, which is a specialised form of autophagy. Mitophagy is induced in response to diverse conditions, including hypoxia, cellular differentiation and mitochondrial damage. However, the mechanisms that govern the removal of specific dysfunctional mitochondria under steady-state conditions to fine-tune mitochondrial content are not well understood. Here, we report that SCFFBXL4 , an SKP1/CUL1/F-box protein ubiquitin ligase complex, localises to the mitochondrial outer membrane in unstressed cells and mediates the constitutive ubiquitylation and degradation of the mitophagy receptors NIX and BNIP3 to suppress basal levels of mitophagy. We demonstrate that the pathogenic variants of FBXL4 that cause encephalopathic mtDNA depletion syndrome (MTDPS13) do not efficiently interact with the core SCF ubiquitin ligase machinery or mediate the degradation of NIX and BNIP3. Thus, we reveal a molecular mechanism whereby FBXL4 actively suppresses mitophagy by preventing NIX and BNIP3 accumulation. We propose that the dysregulation of NIX and BNIP3 turnover causes excessive basal mitophagy in FBXL4-associated mtDNA depletion syndrome.
    Keywords:  BNIP3; FBXL4; NIX/BNIP3L; mitochondria; mitophagy
    DOI:  https://doi.org/10.15252/embj.2022112767
  7. Res Sq. 2023 Apr 28. pii: rs.3.rs-2843025. [Epub ahead of print]
      Venetoclax (VEN), in combination with low dose cytarabine (AraC) or a hypomethylating agent, is FDA approved to treat acute myeloid leukemia (AML) in patients who are over the age of 75 or cannot tolerate standard chemotherapy. Despite high response rates to these combination therapies, most patients succumb to the disease due to relapse and/or drug resistance, providing an unmet clinical need for novel therapies to improve AML patient survival. ME-344 is a potent isoflavone with demonstrated inhibitory activity toward oxidative phosphorylation (OXPHOS) and clinical activity in solid tumors. Given that OXPHOS inhibition enhances VEN antileukemic activity against AML, we hypothesized that ME-344 could enhance the anti-AML activity of VEN. Here we report that ME-344 synergized with VEN to target AML cell lines and primary patient samples while sparing normal hematopoietic cells. Cooperative suppression of OXPHOS was detected in a subset of AML cell lines and primary patient samples. Metabolomics analysis revealed a significant reduction of purine biosynthesis metabolites by ME-344. Further, lometrexol, an inhibitor of purine biosynthesis, synergistically enhanced VEN-induced apoptosis in AML cell lines. Interestingly, AML cells with acquired resistance to AraC showed significantly increased purine biosynthesis metabolites and sensitivities to ME-344. Furthermore, synergy between ME-344 and VEN was preserved in these AraC-resistant AML cells. These results translated into significantly prolonged survival upon combination of ME-344 and VEN in NSGS mice bearing parental or AraC-resistant MV4-11 leukemia. This study demonstrates that ME-344 enhances VEN antileukemic activity against preclinical models of AML by suppressing OXPHOS and/or purine biosynthesis.
    DOI:  https://doi.org/10.21203/rs.3.rs-2843025/v1
  8. Methods Mol Biol. 2023 ;2661 193-215
      Mitochondria retain their own genome and translational apparatus that is highly specialized in the synthesis of a handful of proteins, essential components of the oxidative phosphorylation system. During evolution, the players and mechanisms involved in mitochondrial translation have acquired some unique features, which we have only partially disclosed. The study of the mitochondrial translation process has been historically hampered by the lack of an in vitro translational system and has largely relied on the analysis of the incorporation rate of radiolabeled amino acids into mitochondrial proteins in cellulo or in organello. In this chapter, we describe methods to monitor mitochondrial translation by labeling newly synthesized mitochondrial polypeptides with [S35]-methionine in either yeast or mammalian whole cells or isolated mitochondria.
    Keywords:  Human cells; Mitochondrial translation; Newly synthesized polypeptides; Protein synthesis; Pulse-chase labeling; Yeast; [S35]-methionine
    DOI:  https://doi.org/10.1007/978-1-0716-3171-3_12
  9. Sci Rep. 2023 May 11. 13(1): 7652
      NADH:ubiquinone oxidoreductase, respiratory complex I, plays a major role in cellular energy metabolism by coupling electron transfer with proton translocation. Electron transfer is catalyzed by a flavin mononucleotide and a series of iron-sulfur (Fe/S) clusters. As a by-product of the reaction, the reduced flavin generates reactive oxygen species (ROS). It was suggested that the ROS generated by the respiratory chain in general could damage the Fe/S clusters of the complex. Here, we show that the binuclear Fe/S cluster N1b is specifically damaged by H2O2, however, only at high concentrations. But under the same conditions, the activity of the complex is hardly affected, since N1b can be easily bypassed during electron transfer.
    DOI:  https://doi.org/10.1038/s41598-023-34821-5
  10. EMBO J. 2023 May 08. e114129
      How mitochondrial shape and substrate-specific metabolism are related has been a difficult question to address. Here, new work by Ngo et al (2023) reports that mitochondrial shape-long versus fragmented-determines the activity of β-oxidation of long-chain fatty acids, supporting a novel role for mitochondrial fission products as β-oxidation hubs.
    DOI:  https://doi.org/10.15252/embj.2023114129
  11. Arch Toxicol. 2023 May 08.
      Mitochondrial dysfunction is pivotal in drug-induced acute kidney injury (AKI), but the underlying mechanisms remain largely unknown. Transport proteins embedded in the mitochondrial inner membrane form a significant class of potential drug off-targets. So far, most transporter-drug interactions have been reported for the mitochondrial ADP/ATP carrier (AAC). Since it remains unknown to what extent AAC contributes to drug-induced mitochondrial dysfunction in AKI, we here aimed to better understand the functional role of AAC in the energy metabolism of human renal proximal tubular cells. To this end, CRISPR/Cas9 technology was applied to generate AAC3-/- human conditionally immortalized renal proximal tubule epithelial cells. This AAC3-/- cell model was characterized with respect to mitochondrial function and morphology. To explore whether this model could provide first insights into (mitochondrial) adverse drug effects with suspicion towards AAC-mediated mechanisms, wild-type and knockout cells were exposed to established AAC inhibitors, after which cellular metabolic activity and mitochondrial respiratory capacity were measured. Two AAC3-/- clones showed a significant reduction in ADP import and ATP export rates and mitochondrial mass, without influencing overall morphology. AAC3-/- clones exhibited reduced ATP production, oxygen consumption rates and metabolic spare capacity was particularly affected, mainly in conditions with galactose as carbon source. Chemical AAC inhibition was stronger compared to genetic inhibition in AAC3-/-, suggesting functional compensation by remaining AAC isoforms in our knockout model. In conclusion, our results indicate that ciPTEC-OAT1 cells have a predominantly oxidative phenotype that was not additionally activated by switching energy source. Genetic inhibition of AAC3 particularly impacted mitochondrial spare capacity, without affecting mitochondrial morphology, suggesting an important role for AAC in maintaining the metabolic spare respiration.
    Keywords:  ADP/ATP carrier; CRISPR/Cas9; Drug-induced mitochondrial dysfunction; Nephrotoxicity; Off-target; Oxidative metabolism
    DOI:  https://doi.org/10.1007/s00204-023-03510-7
  12. Neoplasia. 2023 Jul;pii: S1476-5586(23)00028-3. [Epub ahead of print]41 100903
      Nicotinamide phosphoribosyltransferase (NAMPT) is a key metabolic enzyme in NAD+ synthesis pathways and is found upregulated in several tumors, depicting NAD(H) lowering agents, like the NAMPT inhibitor FK866, as an appealing approach for anticancer therapy. Like other small molecules, FK866 triggers chemoresistance, observed in several cancer cellular models, which can prevent its clinical application. The molecular mechanisms sustaining the acquired of resistance to FK866 were studied in a model of triple negative breast cancer (MDA-MB-231 parental - PAR), exposed to increasing concentrations of the small molecule (MDA-MB-231 resistant - RES). RES cells are not sensitive to verapamil or cyclosporin A, excluding a potential role of increased efflux pumps activity as a mechanism of resistance. Similarly, the silencing of the enzyme Nicotinamide Riboside Kinase 1 (NMRK1) in RES cells does not increase FK866 toxicity, excluding this pathway as a compensatory mechanism of NAD+ production. Instead, Seahorse metabolic analysis revealed an increased mitochondrial spare respiratory capacity in RES cells. These cells presented a higher mitochondrial mass compared to the FK866-sensitive counterparts, as well as an increased consumption of pyruvate and succinate for energy production. Interestingly, co-treatment of PAR cells with FK866 and the mitochondrial pyruvate carrier (MPC) inhibitors UK5099 or rosiglitazone, as well as with the transient silencing of MPC2 but not of MPC1, induces a FK866-resistant phenotype. Taken together, these results unravel novel mechanisms of cell plasticity to counteract FK866 toxicity, that, besides the previously described LDHA dependency, rely on mitochondrial rewiring at functional and energetic levels.
    Keywords:  Drug resistance; FK866; MPC2; Metabolic adaptation; Mitochondrial fitness; NAMPT
    DOI:  https://doi.org/10.1016/j.neo.2023.100903
  13. bioRxiv. 2023 Apr 28. pii: 2023.04.24.538118. [Epub ahead of print]
      Interplay between metabolism and chromatin signaling have been implicated in cancer initiation and progression. However, whether and how metabolic reprogramming in tumors generates specific epigenetic vulnerabilities remain unclear. Lung adenocarcinoma (LUAD) tumors frequently harbor mutations that cause aberrant activation of the NRF2 antioxidant pathway and drive aggressive and chemo-resistant disease. We performed a chromatin-focused CRISPR screen and report that NRF2 activation sensitized LUAD cells to genetic and chemical inhibition of class I histone deacetylases (HDAC). This association was consistently observed across cultured cells, syngeneic mouse models and patient-derived xenografts. HDAC inhibition causes widespread increases in histone H4 acetylation (H4ac) at intergenic regions, but also drives re-targeting of H4ac reader protein BRD4 away from promoters with high H4ac levels and transcriptional downregulation of corresponding genes. Integrative epigenomic, transcriptomic and metabolomic analysis demonstrates that these chromatin changes are associated with reduced flux into amino acid metabolism and de novo nucleotide synthesis pathways that are preferentially required for the survival of NRF2-active cancer cells. Together, our findings suggest that metabolic alterations such as NRF2 activation could serve as biomarkers for effective repurposing of HDAC inhibitors to treat solid tumors.
    DOI:  https://doi.org/10.1101/2023.04.24.538118
  14. J Clin Invest. 2023 May 11. pii: e155938. [Epub ahead of print]
      Targeted therapies such as venetoclax (Bcl-2 inhibitor) have revolutionized the treatment of chronic lymphocytic leukemia (CLL). We previously reported that persister CLL cells in treated patients overexpress multiple anti-apoptotic proteins and display resistance to pro-apoptotic agents. Here, we demonstrated that multidrug resistant CLL cells in vivo exhibit apoptosis restriction at a premitochondrial level due to insufficient activation of the Bax and Bak proteins. Co-immunoprecipitation analyses with selective BH-domain antagonists revealed that the pleotropic pro-apoptotic protein (Bim) is prevented from activating Bax/Bak by "switching" interactions to other upregulated anti-apoptotic proteins (Mcl-1/Bcl-xL/Bcl-2). Hence, treatments that bypass Bax/Bak restriction are required to deplete these resistant cells in patients. Protein Phosphatase 2A (PP2A) contributes to oncogenesis and treatment resistance. We observed that a small molecule activator of PP2A (SMAP) induced cytotoxicity in multiple cancer cell lines and CLL samples, including multidrug resistant leukemia/lymphoma cells. The SMAP (DT-061) activated apoptosis in multidrug resistant CLL cells through induction of mitochondrial permeability transition pores (mPTP), independent of Bax/Bak. DT-061 inhibited the growth of wild type and Bax/Bak double knockout multidrug resistant CLL cells in a xenograft mouse model. Collectively, we discovered multidrug resistant CLL cells in patients, and validated a pharmacologically tractable pathway to deplete this reservoir.
    Keywords:  Apoptosis pathways; Cancer; Cell Biology; Oncology; Phosphoprotein phosphatases
    DOI:  https://doi.org/10.1172/JCI155938
  15. bioRxiv. 2023 Apr 30. pii: 2023.04.30.538848. [Epub ahead of print]
      Anaplastic thyroid cancer (ATC) is one of the most aggressive and lethal tumor types, characterized by loss of differentiation, epithelial-to-mesenchymal transition, extremely high proliferation rate, and generalized resistance to therapy. To identify novel relevant, targetable molecular alterations, we analyzed gene expression profiles from a genetically engineered ATC mouse model and from human patient datasets, and found consistent upregulation of genes encoding enzymes involved in the one-carbon metabolic pathway, which uses serine and folates to generate both nucleotides and glycine. Genetic and pharmacological inhibition of SHMT2 , a key enzyme of the mitochondrial arm of the one-carbon pathway, rendered ATC cells glycine auxotroph and led to significant inhibition of cell proliferation and colony forming ability, which was primarily caused by depletion of the purine pool. Notably, these growth-suppressive effects were significantly amplified when cells were grown in the presence of physiological types and levels of folates. Genetic depletion of SHMT2 dramatically impaired tumor growth in vivo, both in xenograft models and in an immunocompetent allograft model of ATC. Together, these data establish the upregulation of the one-carbon metabolic pathway as a novel and targetable vulnerability of ATC cells, which can be exploited for therapeutic purposes.
    DOI:  https://doi.org/10.1101/2023.04.30.538848
  16. Sci Rep. 2023 May 10. 13(1): 7584
      The 90 kDa heat shock protein, Hsp90, functions as a cancer chaperone contributing to tumor proliferation. We have encountered the mitochondrial homolog of Hsp90, the TRAP-1, regulating mitochondrial dynamics, metabolism, and tumor metastasis. Although Hsp90 is associated with a broad network of proteins regulating various cellular processes, TRAP-1-mediated cellular networks are unclear. Therefore, using TRAP-1 knockdown (KD) and overexpression (OE) systems, we compared their quantitative transcriptome (RNA Sequencing) and proteomic (LC-MS/MS) patterns to obtain molecular signatures that are altered in response to TRAP-1 KD or OE. We report TRAP-1 modulating vital metabolic pathways such as the tricarboxylic acid cycle, oxidative phosphorylation, electron transport chain, glycolysis, and gluconeogenesis. In addition, TRAP-1 facilitated the pentose phosphate pathway to shunt carbons back to glycolysis or gluconeogenesis, a much-solicited tumor response. Subsequently, we examined the TRAP-1 interactome using the tandem affinity purification system and identified 255 unique proteins. These diverse proteins appear to regulate several cellular processes, including energy metabolism, suggesting that TRAP-1, in addition to metabolic rewiring, maintains mitochondrial integrity. Our study exposes the unknown functions of TRAP-1 in cancer cells. Systematic evaluation of TRAP-1 interactors may uncover novel regulatory mechanisms in disease aggression. Since metabolic inhibitors are emerging as potential anticancer agents, our study gains importance.
    DOI:  https://doi.org/10.1038/s41598-023-34728-1
  17. Cell Rep. 2023 Apr 30. pii: S2211-1247(23)00465-5. [Epub ahead of print] 112454
      PINK1 is activated by autophosphorylation and forms a high-molecular-weight complex, thereby initiating the selective removal of damaged mitochondria by autophagy. Other than translocase of the outer mitochondrial membrane complexes, members of PINK1-containing protein complexes remain obscure. By mass spectrometric analysis of PINK1 co-immunoprecipitates, we identify the inner membrane protein TIM23 as a component of the PINK1 complex. TIM23 downregulation decreases PINK1 levels and significantly delays autophosphorylation, indicating that TIM23 promotes PINK1 accumulation in response to depolarization. Moreover, inactivation of the mitochondrial protease OMA1 not only enhances PINK1 accumulation but also represses the reduction in PINK1 levels induced by TIM23 downregulation, suggesting that TIM23 facilitates PINK1 activation by safeguarding against degradation by OMA1. Indeed, deficiencies of pathogenic PINK1 mutants that fail to interact with TIM23 are partially restored by OMA1 inactivation. These findings indicate that TIM23 plays a distinct role in activating mitochondrial autophagy by protecting PINK1.
    Keywords:  CP: Cell biology; OMA1; PINK1; TIM23; mitochondrial quality control
    DOI:  https://doi.org/10.1016/j.celrep.2023.112454
  18. Methods Mol Biol. 2023 ;2661 329-342
      Pooled genetic screens have revolutionized the field of functional genomics, yet perturbations that decrease fitness, such as those leading to synthetic lethality, have remained difficult to quantify at the genomic level. We and colleagues previously developed "death screening," a protocol based on the purification of dead cells in genetic screens, and used it to identify a set of genes necessary for mitochondrial gene expression, translation, and oxidative phosphorylation (OXPHOS), thus offering new possibilities for the diagnosis of mitochondrial disorders. Here, we describe Dead-Seq, a refined protocol for death screening that is compatible with most pooled screening protocols, including genome-wide CRISPR/Cas9 screening. Dead-Seq converts negative-selection screens into positive-selection screens and generates high-quality data directly from dead cells, at limited sequencing costs.
    Keywords:  Annexin V; Apoptosis; Auxotrophy; Drop-out screen; Galactose; Genome-wide screening; MACS; Metabolism; Mitochondria; Mitochondrial translation; Necroptosis; ORFeome; RNAi; Synthetic lethality; Systems genetics; sgRNA; shRNA
    DOI:  https://doi.org/10.1007/978-1-0716-3171-3_19
  19. Endocrinology. 2023 May 12. pii: bqad073. [Epub ahead of print]
      Approximately 70% of human breast cancers express estrogen receptor-α (ERα), providing a potential target for endocrine therapy. However, 30%-40% of patients with ER+ breast cancer still experiences recurrence and metastasis, with a 5-year relative overall survival rate of 24%. In this study, we identified NAMPT, an important enzyme in nicotinamide adenine dinucleotide (NAD+) metabolism, to be increased in metastatic breast cancer (MBC) cells treated with Fulv. We tested whether the blockade of NAD+ production via inhibition of nicotinamide phosphoribosyltransferase (NAMPT) synergizes with standard-of-care therapies for ER+ metastatic breast cancer in vitro and in vivo. A synergistic effect was not observed when KPT-9274 was combined with palbociclib or tamoxifen or when Fulv was combined with other metabolic inhibitors. We show that NAMPT inhibitor KPT-9274 and fulvestrant (Fulv) works synergistically to reduce metastatic tumor burden. RNA-sequencing analysis showed that NAMPT inhibitor in combination with Fulv reversed the expression of gene sets associated with more aggressive tumor phenotype, and metabolomics analysis showed that NAMPT inhibition reduced the abundance of metabolites associated with several key tumor metabolic pathways. Targeting metabolic adaptations in endocrine-resistant metastatic breast cancer is a novel strategy, and alternative approaches aimed at improving the therapeutic response of metastatic ER+ tumors are needed. Our findings uncover the role of ERα-NAMPT cross-talk in metastatic breast cancer and the utility of NAMPT inhibition and antiestrogen combination therapy in reducing tumor burden and metastasis, potentially leading to new avenues of metastatic breast cancer treatment.
    Keywords:  NAMPT; estrogen receptor; fulvestrant; metabolism; metastatic breast cancer
    DOI:  https://doi.org/10.1210/endocr/bqad073
  20. Cell Death Dis. 2023 May 09. 14(5): 314
      Melanomas are characterised by accelerated cell proliferation and metabolic reprogramming resulting from the contemporary dysregulation of the MAPK pathway, glycolysis and the tricarboxylic acid (TCA) cycle. Here, we suggest that the oncogenic transcription factor EB (TFEB), a key regulator of lysosomal biogenesis and function, controls melanoma tumour growth through a transcriptional programme targeting ERK1/2 activity and glucose, glutamine and cholesterol metabolism. Mechanistically, TFEB binds and negatively regulates the promoter of DUSP-1, which dephosphorylates ERK1/2. In melanoma cells, TFEB silencing correlates with ERK1/2 dephosphorylation at the activation-related p-Thr185 and p-Tyr187 residues. The decreased ERK1/2 activity synergises with TFEB control of CDK4 expression, resulting in cell proliferation blockade. Simultaneously, TFEB rewires metabolism, influencing glycolysis, glucose and glutamine uptake, and cholesterol synthesis. In TFEB-silenced melanoma cells, cholesterol synthesis is impaired, and the uptake of glucose and glutamine is inhibited, leading to a reduction in glycolysis, glutaminolysis and oxidative phosphorylation. Moreover, the reduction in TFEB level induces reverses TCA cycle, leading to fatty acid production. A syngeneic BRAFV600E melanoma model recapitulated the in vitro study results, showing that TFEB silencing sustains the reduction in tumour growth, increase in DUSP-1 level and inhibition of ERK1/2 action, suggesting a pivotal role for TFEB in maintaining proliferative melanoma cell behaviour and the operational metabolic pathways necessary for meeting the high energy demands of melanoma cells.
    DOI:  https://doi.org/10.1038/s41419-023-05828-7
  21. Elife. 2023 May 12. pii: e85779. [Epub ahead of print]12
      Mitochondria influence cellular function through both cell-autonomous and non-cell autonomous mechanisms, such as production of paracrine and endocrine factors. Here, we demonstrate that mitochondrial regulation of the secretome is more extensive than previously appreciated, as both genetic and pharmacological disruption of the electron transport chain caused upregulation of the Alzheimer's disease risk factor apolipoprotein E (APOE) and other secretome components. Indirect disruption of the electron transport chain by gene editing of SLC25A mitochondrial membrane transporters as well as direct genetic and pharmacological disruption of either complexes I, III, or the copper-containing complex IV of the electron transport chain, elicited upregulation of APOE transcript, protein, and secretion, up to 49-fold. These APOE phenotypes were robustly expressed in diverse cell types and iPSC-derived human astrocytes as part of an inflammatory gene expression program. Moreover, age- and genotype-dependent decline in brain levels of respiratory complex I preceded an increase in APOE in the 5xFAD mouse model. We propose that mitochondria act as novel upstream regulators of APOE-dependent cellular processes in health and disease.
    Keywords:  cell biology; human; neuroscience
    DOI:  https://doi.org/10.7554/eLife.85779
  22. Nat Commun. 2023 May 08. 14(1): 2642
      Cell-selective proteomics is a powerful emerging concept to study heterocellular processes in tissues. However, its high potential to identify non-cell-autonomous disease mechanisms and biomarkers has been hindered by low proteome coverage. Here, we address this limitation and devise a comprehensive azidonorleucine labeling, click chemistry enrichment, and mass spectrometry-based proteomics and secretomics strategy to dissect aberrant signals in pancreatic ductal adenocarcinoma (PDAC). Our in-depth co-culture and in vivo analyses cover more than 10,000 cancer cell-derived proteins and reveal systematic differences between molecular PDAC subtypes. Secreted proteins, such as chemokines and EMT-promoting matrisome proteins, associated with distinct macrophage polarization and tumor stromal composition, differentiate classical and mesenchymal PDAC. Intriguingly, more than 1,600 cancer cell-derived proteins including cytokines and pre-metastatic niche formation-associated factors in mouse serum reflect tumor activity in circulation. Our findings highlight how cell-selective proteomics can accelerate the discovery of diagnostic markers and therapeutic targets in cancer.
    DOI:  https://doi.org/10.1038/s41467-023-38171-8
  23. Annu Rev Biophys. 2023 05 09. 52 229-254
      Mitochondria are involved in multiple cellular tasks, such as ATP synthesis, metabolism, metabolite and ion transport, regulation of apoptosis, inflammation, signaling, and inheritance of mitochondrial DNA. The majority of the correct functioning of mitochondria is based on the large electrochemical proton gradient, whose component, the inner mitochondrial membrane potential, is strictly controlled by ion transport through mitochondrial membranes. Consequently, mitochondrial function is critically dependent on ion homeostasis, the disturbance of which leads to abnormal cell functions. Therefore, the discovery of mitochondrial ion channels influencing ion permeability through the membrane has defined a new dimension of the function of ion channels in different cell types, mainly linked to the important tasks that mitochondrial ion channels perform in cell life and death. This review summarizes studies on animal mitochondrial ion channels with special focus on their biophysical properties, molecular identity, and regulation. Additionally, the potential of mitochondrial ion channels as therapeutic targets for several diseases is briefly discussed.
    Keywords:  calcium channels; chloride channels; mitochondria; mitochondrial megachannel; porin; potassium channels
    DOI:  https://doi.org/10.1146/annurev-biophys-092622-094853
  24. Proc Natl Acad Sci U S A. 2023 05 16. 120(20): e2214942120
      Aberrant accumulation of succinate has been detected in many cancers. However, the cellular function and regulation of succinate in cancer progression is not completely understood. Using stable isotope-resolved metabolomics analysis, we showed that the epithelial mesenchymal transition (EMT) was associated with profound changes in metabolites, including elevation of cytoplasmic succinate levels. The treatment with cell-permeable succinate induced mesenchymal phenotypes in mammary epithelial cells and enhanced cancer cell stemness. Chromatin immunoprecipitation and sequence analysis showed that elevated cytoplasmic succinate levels were sufficient to reduce global 5-hydroxymethylcytosinene (5hmC) accumulation and induce transcriptional repression of EMT-related genes. We showed that expression of procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) was associated with elevation of cytoplasmic succinate during the EMT process. Silencing of PLOD2 expression in breast cancer cells reduced succinate levels and inhibited cancer cell mesenchymal phenotypes and stemness, which was accompanied by elevated 5hmC levels in chromatin. Importantly, exogenous succinate rescued cancer cell stemness and 5hmC levels in PLOD2-silenced cells, suggesting that PLOD2 promotes cancer progression at least partially through succinate. These results reveal the previously unidentified function of succinate in enhancing cancer cell plasticity and stemness.
    Keywords:  cancer cell stemness; cell plasticity; collagen lysyl-hydroxylation; epithelial–mesenchymal transition; metabolite
    DOI:  https://doi.org/10.1073/pnas.2214942120
  25. FEBS J. 2023 May 12.
      Imatinib is the frontline treatment option in treating chronic myeloid leukemia (CML). Hitherto, some patients relapse following treatment. Biochemical analysis of a panel of clonally derived imatinib-resistant cells revealed enhanced glucose uptake and ATP production, suggesting increased rates of glycolysis. Interestingly, increased lactate export was also observed in imatinib-resistant cell lines. Here, we show that metformin inhibits the growth of imatinib-resistant cell lines as well as PBMCs isolated from patients who relapsed following imatinib treatment. Metformin exerted these antiproliferative effects by inhibiting MCT1 and MCT4, leading to the inhibition of lactate export. Furthermore, glucose uptake and ATP production were also inhibited following metformin treatment due to the inhibition of GLUT1 and HK-II in an AMPK-dependent manner. Our results also confirmed that metformin-mediated inhibition of lactate export and glucose uptake occurs through the regulation of mTORC1 and HIF-1α. These results delineate the molecular mechanisms underlying metabolic reprogramming leading to secondary imatinib resistance and the potential of metformin as a therapeutic option in CML.
    Keywords:  GLUT1; HIF1-α and lactate; MCT1; MCT4; Metformin
    DOI:  https://doi.org/10.1111/febs.16818
  26. Redox Biol. 2023 May 04. pii: S2213-2317(23)00133-7. [Epub ahead of print]63 102732
      Glutamine is critical for tumor progression, and restriction of its availability is emerging as a potential therapeutic strategy. The metabolic plasticity of tumor cells helps them adapting to glutamine restriction. However, the role of cholesterol metabolism in this process is relatively unexplored. Here, we reported that glutamine deprivation inhibited cholesterol synthesis in hepatocellular carcinoma (HCC). Reactivation of cholesterol synthesis enhanced glutamine-deprivation-induced cell death of HCC cells, which is partially duo to augmented NADPH depletion and lipid peroxidation. Mechanistically, glutamine deprivation induced lipophagy to transport cholesterol from lipid droplets (LDs) to endoplasmic reticulum (ER), leading to inhibit SREBF2 maturation and cholesterol synthesis, and maintain redox balance for survival. Glutamine deprivation decreased mTORC1 activity to induce lipophagy. Importantly, administration of U18666A, CQ, or shTSC2 viruses further augmented GPNA-induced inhibition of xenograft tumor growth. Clinical data supported that glutamine utilization positively correlated with cholesterol synthesis, which is associated with poor prognosis of HCC patients. Collectively, our study revealed that cholesterol synthesis inhibition is required for the survival of HCC under glutamine-restricted tumor microenvironment.
    Keywords:  Cholesterol metabolism; Glutamine metabolism; Redox balance; SREBF2; mTORC1
    DOI:  https://doi.org/10.1016/j.redox.2023.102732
  27. BMC Biol. 2023 May 08. 21(1): 103
       BACKGROUND: Aging in postmitotic tissues is associated with clonal expansion of somatic mitochondrial deletions, the origin of which is not well understood. Such deletions are often flanked by direct nucleotide repeats, but this alone does not fully explain their distribution. Here, we hypothesized that the close proximity of direct repeats on single-stranded mitochondrial DNA (mtDNA) might play a role in the formation of deletions.
    RESULTS: By analyzing human mtDNA deletions in the major arc of mtDNA, which is single-stranded during replication and is characterized by a high number of deletions, we found a non-uniform distribution with a "hot spot" where one deletion breakpoint occurred within the region of 6-9 kb and another within 13-16 kb of the mtDNA. This distribution was not explained by the presence of direct repeats, suggesting that other factors, such as the spatial proximity of these two regions, can be the cause. In silico analyses revealed that the single-stranded major arc may be organized as a large-scale hairpin-like loop with a center close to 11 kb and contacting regions between 6-9 kb and 13-16 kb, which would explain the high deletion activity in this contact zone. The direct repeats located within the contact zone, such as the well-known common repeat with a first arm at 8470-8482 bp (base pair) and a second arm at 13,447-13,459 bp, are three times more likely to cause deletions compared to direct repeats located outside of the contact zone. A comparison of age- and disease-associated deletions demonstrated that the contact zone plays a crucial role in explaining the age-associated deletions, emphasizing its importance in the rate of healthy aging.
    CONCLUSIONS: Overall, we provide topological insights into the mechanism of age-associated deletion formation in human mtDNA, which could be used to predict somatic deletion burden and maximum lifespan in different human haplogroups and mammalian species.
    Keywords:  Aging; Contact zone; Deletions; Direct repeats; Global secondary structure; Inverted repeats; Mitochondrial DNA; Single-stranded DNA; mtDNA replication
    DOI:  https://doi.org/10.1186/s12915-023-01606-1
  28. Life Sci. 2023 May 07. pii: S0024-3205(23)00387-9. [Epub ahead of print] 121753
       AIMS: Medroxyprogesterone acetate (MPA) is the most common fertility-sparing treatment in patients with early-stage endometrial cancer. If MPA treatment fails, hysterectomy is recommended. Thus, there is an urgent need for novel treatment approaches for MPA-resistant endometrial cancer patients who wish to preserve their fertility. Ferroptosis is a recently discovered type of regulated cell death caused by the excessive accumulation of reactive oxygen species (ROS), followed by aberrant lipid peroxidation. Recent studies have shown that inducing ferroptosis is a potential therapeutic strategy for cancer. However, the role of ferroptosis in endometrial cancer treatment remains to be discussed. We therefore investigated the effects of ferroptosis inducers on MPA-resistant endometrial cancer cells.
    MAIN METHODS: The levels of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), the main mediators of ferroptosis, were examined. Cell viability was evaluated after treatment with the ferroptosis inducers sulfasalazine, erastin, or RSL3. The degree of intracellular oxidative stress after treatment with these drugs was evaluated by the glutathione level, ROS level, ferrous iron level, lipid peroxidation and changes in mitochondrial morphology. The effect of ferroptosis inducers in vivo was also examined.
    KEY FINDINGS: The expression of SLC7A11 and GPX4 in MPA-resistant ECC-1 cells decreased in comparison to parental ECC-1 cells. Sulfasalazine, erastin, and RSL3 significantly reduced cell viability and increased intracellular oxidative stress in MPA-resistant ECC-1 cells. Ferroptosis inducers also suppressed in vivo tumor growth more effectively in MPA-resistant ECC-1.
    SIGNIFICANCE: Treatment with ferroptosis inducers could be a novel therapeutic approach for MPA-resistant endometrial cancer.
    Keywords:  Endometrial cancer; Ferroptosis; Fertility-preserving treatment; GPX4; Medroxyprogesterone acetate (MPA); SLC7A11
    DOI:  https://doi.org/10.1016/j.lfs.2023.121753