bims-mibica Biomed News
on Mitochondrial bioenergetics in cancer
Issue of 2023–10–01
25 papers selected by
Kelsey Fisher-Wellman, East Carolina University



  1. Front Oncol. 2023 ;13 1244280
      Chemoresistance often complicates the management of cancer, as noted in the instance of acute myeloid leukemia (AML). Mitochondrial function is considered important for the viability of AML blasts and appears to also modulate chemoresistance. As mitochondrial metabolism is aberrant in AML, any distinct pathways could be directly targeted to impact both cell viability and chemoresistance. Therefore, identifying and targeting those precise rogue elements of mitochondrial metabolism could be a valid therapeutic strategy in leukemia. Here, we review the evidence for abnormalities in mitochondria metabolic processes in AML cells, that likely impact chemoresistance. We further address several therapeutic approaches targeting isocitrate dehydrogenase 2 (IDH2), CD39, nicotinamide phosphoribosyl transferase (NAMPT), electron transport chain (ETC) complex in AML and also consider the roles of mesenchymal stromal cells. We propose the term "mitotherapy" to collectively refer to such regimens that attempt to override mitochondria-mediated metabolic reprogramming, as used by cancer cells. Mounting evidence suggests that mitotherapy could provide a complementary strategy to overcome chemoresistance in liquid cancers, as well as in solid tumors.
    Keywords:  acute myeloid leukemia; chemoresistance; metabolic reprogramming; mitochondrial metabolism; mitotherapy
    DOI:  https://doi.org/10.3389/fonc.2023.1244280
  2. Cancers (Basel). 2023 Sep 08. pii: 4476. [Epub ahead of print]15(18):
      A recent paper published in Nature Medicine reported on the Phase I clinical trial of a mitochondria-targeting anti-cancer agent IACS-01059 in patients with acute myeloid leukemia (AML) and solid tumors [...].
    DOI:  https://doi.org/10.3390/cancers15184476
  3. Mol Cell. 2023 Sep 21. pii: S1097-2765(23)00696-2. [Epub ahead of print]
      Folding of newly synthesized proteins poses challenges for a functional proteome. Dedicated protein quality control (PQC) systems either promote the folding of nascent polypeptides at ribosomes or, if this fails, ensure their degradation. Although well studied for cytosolic protein biogenesis, it is not understood how these processes work for mitochondrially encoded proteins, key subunits of the oxidative phosphorylation (OXPHOS) system. Here, we identify dedicated hubs in proximity to mitoribosomal tunnel exits coordinating mitochondrial protein biogenesis and quality control. Conserved prohibitin (PHB)/m-AAA protease supercomplexes and the availability of assembly chaperones determine the fate of newly synthesized proteins by molecular triaging. The localization of these competing activities in the vicinity of the mitoribosomal tunnel exit allows for a prompt decision on whether newly synthesized proteins are fed into OXPHOS assembly or are degraded.
    Keywords:  assembly factors; complex assembly; m-AAA protease; mitochondria; mitoribosome; prohibitin; protein biogenesis; protein quality control; respiratory chain; translation
    DOI:  https://doi.org/10.1016/j.molcel.2023.09.001
  4. Nat Cell Biol. 2023 Sep 28.
      Mitochondrial oxidative phosphorylation (OXPHOS) complexes are assembled from proteins encoded by both nuclear and mitochondrial DNA. These dual-origin enzymes pose a complex gene regulatory challenge for cells requiring coordinated gene expression across organelles. To identify genes involved in dual-origin protein complex synthesis, we performed fluorescence-activated cell-sorting-based genome-wide screens analysing mutant cells with unbalanced levels of mitochondrial- and nuclear-encoded subunits of Complex IV. We identified genes involved in OXPHOS biogenesis, including two uncharacterized genes: PREPL and NME6. We found that PREPL specifically impacts Complex IV biogenesis by acting at the intersection of mitochondrial lipid metabolism and protein synthesis, whereas NME6, an uncharacterized nucleoside diphosphate kinase, controls OXPHOS biogenesis through multiple mechanisms reliant on its NDPK domain. Firstly, NME6 forms a complex with RCC1L, which together perform nucleoside diphosphate kinase activity to maintain local mitochondrial pyrimidine triphosphate levels essential for mitochondrial RNA abundance. Secondly, NME6 modulates the activity of mitoribosome regulatory complexes, altering mitoribosome assembly and mitochondrial RNA pseudouridylation. Taken together, we propose that NME6 acts as a link between compartmentalized mitochondrial metabolites and mitochondrial gene expression.
    DOI:  https://doi.org/10.1038/s41556-023-01244-3
  5. Adv Healthc Mater. 2023 Sep 24. e2302012
      Mitochondrial potassium ion channels have become a promising target for cancer therapy. However, in malignant tumours, their low expression or inhibitory regulation typically leads to undesired cancer therapy, or even induces drug resistance. Herein, we developed an in situ mitochondria-targeted artificial K+ channel construction strategy, with the purpose to trigger cancer cell apoptosis by impairing mitochondrial ion homeostasis. By considering the fact that cancer cells have a lower membrane potential than that of normal cells, our strategy could selectively deliver artificial K+ channel molecule 5F8 to the mitochondria of cancer cells, by using a mitochondria-targeting triphenylphosphine modified block polymer (MPTPP) as a carrier. More importantly, 5F8 could further specifically form a K+ -selective ion channel through the directional assembly of crown ethers on the mitochondrial membrane, thereby inducing mitochondrial K+ influx and disrupting ions homeostasis. Thanks to this design, mitochondrial dysfunction, including decreased mitochondrial membrane potential, reduced ATP synthesis, downregulated anti-apoptotic BCL-2 and MCL-1 protein levels, and increased ROS levels, could further effectively induce the programmed apoptosis of multidrug-resistant cancer cells, no matter in case of pump or non-pump dependent drug resistance. In short, this mitochondria-targeted artificial K+ -selective ion channel construction strategy might be beneficial for potential drug resistance cancer therapy. This article is protected by copyright. All rights reserved.
    Keywords:  Artificial K+ channels; Cancer therapy; Mitochondrial homeostasis; Mitochondrial targeting; Multidrug resistance
    DOI:  https://doi.org/10.1002/adhm.202302012
  6. Theranostics. 2023 ;13(14): 5057-5074
      Background: Recently years have seen the increasing evidence identifying that OXPHOS is involved in different processes of tumor progression and metastasis and has been proposed to be a potential therapeutical target for cancer treatment. However, the exploration in oxidative phosphorylation-mediated chemoresistance is still scarce. In our study, we identify exosomal transfer leads to chemoresistance by reprogramming metabolic phenotype in recipient cells. Methods: RNA sequencing analysis was used to screen altered targets mediating exosome transfer-induced chemoresistance. Seahorse assay allowed us to measure mitochondrial respiration. Stemness was measured by spheroids formation assay. Serum exosomes were isolated for circ_0001610 quantification. Results: The induced oxidative phosphorylation leads to more stem-like properties, which is dependent on the transfer of exosomal circ_0001610. Exosome transfer results in the removal of miR-30e-5p-mediated suppression of PGC-1a, a master of mitochondrial biogenesis and function. Consequently, increased PGC-1a reshapes cellular metabolism towards oxidative phosphorylation, leading to chemoresistance. Inhibition of OXPHOS or exosomal si-circ_0001610 increases the sensitivity of chemotherapy by decreasing cell stemness in vitro and in vivo. Conclusion: Our data suggests that exosomal circ_0001610-induced OXPHOS plays an important role in chemoresistance and supports a therapeutical potential of circ_0001610 inhibitors in the treatment of oxaliplatin-resistant colorectal cancer by manipulating cell stemness.
    Keywords:  Oxidative Phosphorylation; PGC-1a; chemoresistance; exosome; stemness
    DOI:  https://doi.org/10.7150/thno.84937
  7. Nat Rev Mol Cell Biol. 2023 Sep 29.
      Mitochondria are multifaceted organelles with key roles in anabolic and catabolic metabolism, bioenergetics, cellular signalling and nutrient sensing, and programmed cell death processes. Their diverse functions are enabled by a sophisticated set of protein components encoded by the nuclear and mitochondrial genomes. The extent and complexity of the mitochondrial proteome remained unclear for decades. This began to change 20 years ago when, driven by the emergence of mass spectrometry-based proteomics, the first draft mitochondrial proteomes were established. In the ensuing decades, further technological and computational advances helped to refine these 'maps', with current estimates of the core mammalian mitochondrial proteome ranging from 1,000 to 1,500 proteins. The creation of these compendia provided a systemic view of an organelle previously studied primarily in a reductionist fashion and has accelerated both basic scientific discovery and the diagnosis and treatment of human disease. Yet numerous challenges remain in understanding mitochondrial biology and translating this knowledge into the medical context. In this Roadmap, we propose a path forward for refining the mitochondrial protein map to enhance its discovery and therapeutic potential. We discuss how emerging technologies can assist the detection of new mitochondrial proteins, reveal their patterns of expression across diverse tissues and cell types, and provide key information on proteoforms. We highlight the power of an enhanced map for systematically defining the functions of its members. Finally, we examine the utility of an expanded, functionally annotated mitochondrial proteome in a translational setting for aiding both diagnosis of mitochondrial disease and targeting of mitochondria for treatment.
    DOI:  https://doi.org/10.1038/s41580-023-00650-7
  8. Nat Commun. 2023 Sep 27. 14(1): 6036
      Hydrogen peroxide (H2O2) functions as a second messenger to signal metabolic distress through highly compartmentalized production in mitochondria. The dynamics of reactive oxygen species (ROS) generation and diffusion between mitochondrial compartments and into the cytosol govern oxidative stress responses and pathology, though these processes remain poorly understood. Here, we couple the H2O2 biosensor, HyPer7, with optogenetic stimulation of the ROS-generating protein KillerRed targeted into multiple mitochondrial microdomains. Single mitochondrial photogeneration of H2O2 demonstrates the spatiotemporal dynamics of ROS diffusion and transient hyperfusion of mitochondria due to ROS. This transient hyperfusion phenotype required mitochondrial fusion but not fission machinery. Measurement of microdomain-specific H2O2 diffusion kinetics reveals directionally selective diffusion through mitochondrial microdomains. All-optical generation and detection of physiologically-relevant concentrations of H2O2 between mitochondrial compartments provide a map of mitochondrial H2O2 diffusion dynamics in situ as a framework to understand the role of ROS in health and disease.
    DOI:  https://doi.org/10.1038/s41467-023-41682-z
  9. Cell Death Discov. 2023 Sep 29. 9(1): 360
      PTP4A1 (Protein tyrosine phosphatase 4A1) is a protein tyrosine phosphatase that regulates a range of pro-oncogenic signaling pathways. Here, we report a novel role for PTP4A1 in oral squamous cell carcinoma (OSCC) growth and development. We show that PTP4A1 is frequently overexpressed in OSCC cells and tissues compared to adjacent non-tumor tissue. In OSCC, the overexpression of PTP4A1 increased cell growth and invasion in vitro, and enhanced tumor progression in vivo. At the molecular level, PTP4A1 was found to regulate mitochondrial metabolic reprogramming to enhance the invasive capacity of OSCC cells. Mechanistically, these effects were mediated through binding to pyruvate kinase isoenzyme M2 (PKM2) to promote its expression and aconitase 2 (ACO2) to enhance its degradation. Together, these data reveal PTP4A1 as a viable target for OSCC therapeutics.
    DOI:  https://doi.org/10.1038/s41420-023-01657-x
  10. STAR Protoc. 2023 Sep 23. pii: S2666-1667(23)00527-0. [Epub ahead of print]4(4): 102560
      Mitochondrial respirometry allows for the comprehensive study of oxygen consumption within the electron transport system in tissues. However, limited techniques exist for analyzing frozen or biobanked intestinal tissues. Here, we present a protocol to evaluate the respiratory function of mitochondria in colonic tissues after cryopreservation at -80°C. We describe steps for rat dissection, respirometry calibration, and tissue preparation. We then detail measurement of oxygen respiration and protein concentration. This protocol facilitates the retrospective analysis of mitochondrial respiration in frozen tissue.
    Keywords:  Health Sciences; Metabolism; Model Organisms; Molecular Biology
    DOI:  https://doi.org/10.1016/j.xpro.2023.102560
  11. Cell Death Discov. 2023 Sep 23. 9(1): 350
      Liver cancer stem cells (LCSCs) are recognized as key contributors to hepatocarcinogenesis, progression, and recurrence. Consequently, eradicating LCSCs has a great chance of increasing long-term survival in patients with liver cancer. Parthenolide (PTL), a natural sesquiterpene lactone product, possesses robust antitumor activity. However, the effects of PTL on LCSCs and underlying mechanisms remain unknown. Here we show that administration of PTL stimulated cell cycle arrest at the G1 phase, induced apoptosis, and decreased the stemness of LCSCs. Further research indicates that PTL caused the production of ROS and the reduction of oxidative phosphorylation (OXPHOS) and mitochondrial membrane potential (MMP) levels of LCSCs. RNA sequencing (RNA-Seq) further shows that PTL decreased SLC25A1 expression at the mRNA level and that inhibition of SLC25A1 synergistically decreased the expression of IDH2 and several pivotal genes involved in mitochondrial respiratory chain complex, resulting in the production of ROS and mitochondrial dysfunction. In addition, the inhibitory effect of PTL on mitochondrial function and self-renewal capacity of LCSCs was abolished by the knockdown of SLC25A1 or treatment with SLC25A1 inhibitor CTPI-2. Importantly, PTL prevented liver cancer growth in vivo without clearly causing toxicity. Our research shows that PTL inhibits the growth and stemness of LCSCs through SLC25A1-mediated mitochondrial function. PTL may be a potential candidate natural agent for liver cancer treatment.
    DOI:  https://doi.org/10.1038/s41420-023-01640-6
  12. Cell Rep. 2023 Sep 27. pii: S2211-1247(23)01188-9. [Epub ahead of print]42(10): 113176
      MCL-1 is a high-priority target due to its dominant role in the pathogenesis and chemoresistance of cancer, yet clinical trials of MCL-1 inhibitors are revealing toxic side effects. MCL-1 biology is complex, extending beyond apoptotic regulation and confounded by its multiple isoforms, its domains of unresolved structure and function, and challenges in distinguishing noncanonical activities from the apoptotic response. We find that, in the presence or absence of an intact mitochondrial apoptotic pathway, genetic deletion or pharmacologic targeting of MCL-1 induces DNA damage and retards cell proliferation. Indeed, the cancer cell susceptibility profile of MCL-1 inhibitors better matches that of anti-proliferative than pro-apoptotic drugs, expanding their potential therapeutic applications, including synergistic combinations, but heightening therapeutic window concerns. Proteomic profiling provides a resource for mechanistic dissection and reveals the minichromosome maintenance DNA helicase as an interacting nuclear protein complex that links MCL-1 to the regulation of DNA integrity and cell-cycle progression.
    Keywords:  BCL-2 family; CP: Cancer; CP: Molecular biology; DNA damage; MCL-1; apoptosis; cancer; cell cycle; cell proliferation; chemotherapy; minichrosome maintenance complex; proteomics
    DOI:  https://doi.org/10.1016/j.celrep.2023.113176
  13. J Biochem. 2023 Sep 29. pii: mvad075. [Epub ahead of print]
      Cyclic AMP (cAMP) - protein kinase A (PKA) signaling is a highly conserved pathway in eukaryotes and plays a central role in cell signaling cascades in response to environmental changes. Elevated cAMP levels promote the activation of PKA, which phosphorylates various downstream proteins. Many cytosolic and nuclear proteins, such as metabolic enzymes and transcriptional factors, have been identified as substrates for PKA, suggesting that PKA-mediated regulation occurs predominantly in the cytosol. Mitochondrial proteins are also phosphorylated by PKA, and PKA-mediated phosphorylation of mitochondrial proteins is considered to control a variety of mitochondrial functions, including oxidative phosphorylation, protein import, morphology, and quality control. In this review, we outline PKA mitochondrial substrates and summarize the regulation of mitochondrial functions through PKA-mediated phosphorylation.
    Keywords:  PKA; cAMP; mitochondria; phosphorylation
    DOI:  https://doi.org/10.1093/jb/mvad075
  14. Neuro Oncol. 2023 Sep 28. pii: noad190. [Epub ahead of print]
      Glioblastoma is the most common malignant brain tumor in adults. Cellular plasticity and the poorly differentiated features result in a fast relapse of the tumors following treatment. Moreover, the immunosuppressive microenvironment proved to be a major obstacle to immunotherapeutic approaches. Branched-chain amino acid transaminase 1 (BCAT1) is a metabolic enzyme that converts branched-chain amino acids into branched-chain keto acids, depleting cellular α-ketoglutarate and producing glutamate. BCAT1 was shown to drive the growth of glioblastoma and other cancers; however, its oncogenic mechanism remains poorly understood. Here, we show that BCAT1 is crucial for maintaining the poorly differentiated state of glioblastoma cells and that its low expression correlates with a more differentiated glioblastoma phenotype. Furthermore, orthotopic tumor injection into immunocompetent mice demonstrated that the brain microenvironment is sufficient to induce differentiation of Bcat1-KO tumors in vivo. We link the transition to a differentiated cell state to the increased activity of TET demethylases and the hypomethylation and activation of neuronal differentiation genes. In addition, the knockout of Bcat1 attenuated immunosuppression, allowing for an extensive infiltration of CD8 + cytotoxic T-cells and complete abrogation of tumor growth. Further analysis in immunodeficient mice revealed that both tumor cell differentiation and immunomodulation following BCAT1-KO contribute to the long-term suppression of tumor growth. In summary, our study unveils BCAT1's pivotal role in promoting glioblastoma growth by inhibiting tumor cell differentiation and sustaining an immunosuppressive milieu. These findings offer a novel therapeutic avenue for targeting glioblastoma through the inhibition of BCAT1.
    Keywords:  BCAT1; differentiation; immunosuppression; neurooncology
    DOI:  https://doi.org/10.1093/neuonc/noad190
  15. Elife. 2023 Sep 29. pii: e85898. [Epub ahead of print]12
      The mTOR inhibitor, everolimus, is an important clinical management component of metastatic ER+ breast cancer (BC). However, most patients develop resistance and progress on therapy, highlighting the need to discover strategies that increase mTOR inhibitor effectiveness. We developed ER+ BC cell lines, sensitive or resistant to everolimus, and discovered that combination treatment of ONC201/TIC10 with everolimus inhibited cell growth in 2D/3D in vitro studies. We confirmed increased therapeutic response in primary patient cells progressing on everolimus, supporting clinical relevance. We show that ONC201/TIC10 mechanism in metastatic ER+ BC cells involves oxidative phosphorylation inhibition and stress response activation. Transcriptomic analysis in everolimus resistant breast patient tumors and mitochondrial functional assays in resistant cell lines demonstrated increased mitochondrial respiration dependency, contributing to ONC201/TIC10 sensitivity. We propose that ONC201/TIC10 and modulation of mitochondrial function may provide an effective add-on therapy strategy for patients with metastatic ER+ BCs resistant to mTOR inhibitors.
    Keywords:  ONC201/TIC10; breast cancer; cancer biology; drug resistance; everolimus; human; mitochondria; stress response
    DOI:  https://doi.org/10.7554/eLife.85898
  16. Cell Death Discov. 2023 Sep 25. 9(1): 352
      Lung cancer is the leading cause of cancer mortality worldwide. In recent years, the incidence of lung cancer subtype lung adenocarcinoma (LUAD) has steadily increased. Mitochondria, as a pivotal site of cell bioenergetics, metabolism, cell signaling, and cell death, are often dysregulated in lung cancer cells. Mitochondria maintenance and integrity depend on mitochondrial quality control proteins (MQCPs). During lung cancer progression, the levels of MQCPs could change and promote cancer cell adaptation to the microenvironment and stresses. Here, univariate and multivariate proportional Cox regression analyses were applied to develop a signature based on the level of MQCPs (dimeric form of BNIP3, DRP1, and SIRT3) in tumorous and non-tumorous samples of 80 patients with LUAD. The MQCP signature could be used to separate the patients with LUAD into high- and low-risk groups. Survival analysis indicated that patients in the high-risk group had dramatically shorter overall survival compared with the low-risk patients. Moreover, a nomogram combining clinicopathologic features and the MQCP signature was constructed and validated to predict 1-, 3-, and 5-year overall survival of the patients. Thus, this study presents a novel signature based on MQCPs as a reliable prognostic tool to predict overall survival for patients with LUAD.
    DOI:  https://doi.org/10.1038/s41420-023-01649-x
  17. Mol Cancer Res. 2023 Sep 29.
      Small-cell lung cancer (SCLC) has a poor prognosis, emphasizing the necessity for developing new therapies. The de novo synthesis pathway of purine nucleotides, which is involved in the malignant growth of SCLC, has emerged as a novel therapeutic target. Purine nucleotides are supplied by two pathways: de novo and salvage. However, the role of the salvage pathway in SCLC and the differences in utilization and crosstalk between the two pathways remain largely unclear. Here, we found that deletion of the HPRT1 gene, which codes for the rate-limiting enzyme of the purine salvage pathway, significantly suppressed tumor growth in vivo in several SCLC cells. We also demonstrated that HPRT1 expression confers resistance to lemetrexol (LMX), an inhibitor of the purine de novo pathway. Interestingly, HPRT1-knockout had less effect on SCLC SBC-5 cells, which are more sensitive to LMX than other SCLC cell lines, suggesting that a preference for either the purine de novo or salvage pathway occurs in SCLC. Furthermore, metabolome analysis of HPRT1-knockout cells revealed increased intermediates in the pentose phosphate pathway and elevated metabolic flux in the purine de novo pathway, indicating compensated metabolism between the de novo and salvage pathways in purine nucleotide biosynthesis. These results suggest that HPRT1 has therapeutic implications in SCLC and provide fundamental insights into the regulation of purine nucleotide biosynthesis. Implications: SCLC tumors preferentially utilize either the de novo or salvage pathway in purine nucleotide biosynthesis, and HPRT1 has therapeutic implications in SCLC.
    DOI:  https://doi.org/10.1158/1541-7786.MCR-23-0386
  18. Cell Rep. 2023 Sep 19. pii: S2211-1247(23)01159-2. [Epub ahead of print]42(9): 113147
      Metastasis is the major cause of cancer deaths, and cancer cells evolve to adapt to various tumor microenvironments, which hinders the treatment of tumor metastasis. Platelets play critical roles in tumor development, especially during metastasis. Here, we elucidate the role of platelet mitochondria in tumor metastasis. Cancer cells are reprogrammed to a metastatic state through the acquisition of platelet mitochondria via the PINK1/Parkin-Mfn2 pathway. Furthermore, platelet mitochondria regulate the GSH/GSSG ratio and reactive oxygen species (ROS) in cancer cells to promote lung metastasis of osteosarcoma. Impairing platelet mitochondrial function has proven to be an efficient approach to impair metastasis, providing a direction for osteosarcoma therapy. Our findings demonstrate mitochondrial transfer between platelets and cancer cells and suggest a role for platelet mitochondria in tumor metastasis.
    Keywords:  CP: Cancer; CP: Cell biology; glutathione; metabolic reprogram; mitochondria transfer; osteosarcoma metastasis; oxidative stress; platelets
    DOI:  https://doi.org/10.1016/j.celrep.2023.113147
  19. Int J Mol Sci. 2023 Sep 14. pii: 14072. [Epub ahead of print]24(18):
      Epstein-Barr virus (EBV) is associated with various human malignancies. An association between EBV infection and oral squamous cell carcinoma (OSCC) has recently been reported. We established EBV-positive OSCC cells and demonstrated that EBV infection promoted OSCC progression. However, the mechanisms by which EBV promotes OSCC progression remain poorly understood. Therefore, we performed metabolic analyses of EBV-positive OSCC cells and established a xenograft model to investigate the viral contribution to OSCC progression. Here, we demonstrated that EBV infection induced mitochondrial stress by reducing the number of mitochondrial DNA (mtDNA) copies. Microarray data from EBV-positive OSCC cells showed altered expression of glycolysis-related genes, particularly the upregulation of key genes involved in the Warburg effect, including LDHA, GLUT1, and PDK1. Furthermore, lactate production and LDH activity were elevated in EBV-positive OSCC cells. EBV infection significantly upregulated the expression levels of cancer stem cell (CSC) markers such as CD44 and CD133 in the xenograft model. In this model, tumor growth was significantly increased in EBV-positive SCC25 cells compared with that in uninfected cells. Furthermore, tumorigenicity increased after serial passages of EBV-positive SCC25 tumors. This study revealed the oncogenic role of EBV in OSCC progression by inducing the Warburg effect and cancer stemness.
    Keywords:  CD44; Epstein–Barr virus; GLUT1; LDHA; Warburg effect; cancer stem cell; glycolysis; oral squamous cell carcinoma
    DOI:  https://doi.org/10.3390/ijms241814072
  20. Biomedicines. 2023 Sep 12. pii: 2515. [Epub ahead of print]11(9):
      The ketone bodies, sodium and lithium salts of acetoacetate (AcAc) and sodium 3-hydroxybutyrate (3-HB; commonly called beta-hydroxybutyrate) have been found to inhibit the proliferation of cancer cells. Previous studies have suggested that lithium itself may be an inhibiting agent but may be additive or synergistic with the effect of AcAc. We previously found that sodium acetoacetate (NaAcAc) inhibits the growth of human colon cancer cell line SW480. We report here similar results for several other cancer cell lines including ovarian, cervical and breast cancers. We found that NaAcAc does not kill cancer cells but rather blocks their proliferation. Similar inhibition of growth was seen in the effect of lithium ion alone (as LiCl). The effect of LiAcAc appears to be due to the combined effects of acetoacetate and the lithium ion. The ketone bodies, when given together with chemotherapeutic agents, rapamycin, methotrexate and the new peptide anti-cancer agent, PNC-27, substantially lowers their IC50 values for cancer cell, killing suggesting that ketone bodies and ketogenic diets may be powerful adjunct agents in treating human cancers.
    Keywords:  IC50 values; cancer cell viability; chemotherapeutic agents; ketone bodies
    DOI:  https://doi.org/10.3390/biomedicines11092515
  21. Sci Rep. 2023 09 26. 13(1): 16144
      Pancreatic ductal adenocarcinoma (PDAC), a highly lethal disease with limited therapeutic options, may benefit from repurposing of FDA-approved drugs in preventive or interceptive strategies in high-risk populations. Previous animal studies demonstrated that the use of metformin and statins as single agents at relatively high doses restrained PDAC development. Here, four-week-old mice expressing KrasG12D in all pancreatic lineages (KC mice) and fed an obesogenic high fat, high calorie diet that promotes early PDAC development were randomized onto low dosage metformin, simvastatin, or both drugs in combination administered orally. Dual treatment attenuated weight gain, fibro-inflammation, and development of advanced PDAC precursor lesions (pancreatic intraepithelial neoplasia [PanIN]-3) in male KC mice, without significant effect in females or when administered individually. Dual-treated KC mice had reduced proliferation of PanIN cells and decreased transcriptional activity of the Hippo effectors, YAP and TAZ, which are important regulators of PDAC development. Metformin and simvastatin also synergistically inhibited colony formation of pancreatic cancer cells in vitro. Together, our data demonstrated that a combination of low doses of metformin and simvastatin inhibits PDAC development and imply that both drugs are promising agents for being tested in clinical trials for preventing pancreatic cancer progression.
    DOI:  https://doi.org/10.1038/s41598-023-43498-9
  22. J Clin Invest. 2023 Sep 26. pii: e170169. [Epub ahead of print]
      The BCL-2 inhibitor venetoclax is effective in chronic lymphocytic leukemia (CLL); however, resistance may develop over time. Other lymphoid malignancies such as diffuse large B-cell lymphoma (DLBCL) are frequently intrinsically resistant to venetoclax. Although genomic resistance mechanisms such as BCL-2 mutations have been described, this likely only explains a subset of resistant cases. Using two complementary functional precision medicine techniques -- BH3-profiling and high throughput-kinase activity mapping -- we found that hyperphosphorylation of BCL-2 family proteins, including anti-apoptotic MCL-1 and BCL-2 and pro-apoptotic BAD and BAX, underlies functional mechanisms of both intrinsic and acquired resistance of venetoclax in CLL and DLBCL. Additionally, we provide evidence that anti-apoptotic BCL-2 family protein phosphorylation alters the apoptotic protein interactome, thereby changing the profile of functional dependence on these pro-survival proteins. Targeting BCL-2 family protein phosphorylation with phosphatase-activating drugs re-wired these dependences, thus restoring sensitivity to venetoclax in a panel of venetoclax resistant lymphoid cell lines, resistant mouse model, and paired patient samples pre-venetoclax and at time of progression.
    Keywords:  Apoptosis survival pathways; Hematology; Oncology; Phosphoprotein phosphatases; Protein kinases
    DOI:  https://doi.org/10.1172/JCI170169
  23. Front Immunol. 2023 ;14 1231700
       Introduction: We have previously demonstrated that a pathologic downregulation of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1α) within the intestinal epithelium contributes to the pathogenesis of inflammatory bowel disease (IBD). However, the mechanism underlying downregulation of PGC1α expression and activity during IBD is not yet clear.
    Methods: Mice (male; C57Bl/6, Villincre/+;Pgc1afl/fl mice, and Pgc1afl/fl) were subjected to experimental colitis and treated with nicotinamide riboside. Western blot, high-resolution respirometry, nicotinamide adenine dinucleotide (NAD+) quantification, and immunoprecipitation were used to in this study.
    Results: We demonstrate a significant depletion in the NAD+ levels within the intestinal epithelium of mice undergoing experimental colitis, as well as humans with ulcerative colitis. While we found no decrease in the levels of NAD+-synthesizing enzymes within the intestinal epithelium of mice undergoing experimental colitis, we did find an increase in the mRNA level, as well as the enzymatic activity, of the NAD+-consuming enzyme poly(ADP-ribose) polymerase-1 (PARP1). Treatment of mice undergoing experimental colitis with an NAD+ precursor reduced the severity of colitis, restored mitochondrial function, and increased active PGC1α levels; however, NAD+ repletion did not benefit transgenic mice that lack PGC1α within the intestinal epithelium, suggesting that the therapeutic effects require an intact PGC1α axis.
    Discussion: Our results emphasize the importance of PGC1α expression to both mitochondrial health and homeostasis within the intestinal epithelium and suggest a novel therapeutic approach for disease management. These findings also provide a mechanistic basis for clinical trials of nicotinamide riboside in IBD patients.
    Keywords:  PGC1α; colitis; nicotinamide adenine dinucleotide; nicotinamide riboside; poly(ADP) riboside polymers
    DOI:  https://doi.org/10.3389/fimmu.2023.1231700
  24. Oncogene. 2023 Sep 26.
      The internal tandem duplication of the FMS-like tyrosine kinase 3 (FLT3-ITD) is one of the most frequent genetic alterations in acute myeloid leukemia (AML). Limited and transient clinical benefit of FLT3 kinase inhibitors (FLT3i) emphasizes the need for alternative therapeutic options for this subset of myeloid malignancies. Herein, we showed that FLT3-ITD mutant (FLT3-ITD+) AML cells were susceptible toward inhibitors of DHODH, a rate-limiting enzyme of de novo pyrimidine biosynthesis. Genetic and pharmacological blockade of DHODH triggered downregulation of FLT3-ITD protein, subsequently suppressed activation of downstream ERK and STAT5, and promoted cell death of FLT3-ITD+ AML cells. Mechanistically, DHODH blockade triggered autophagy-mediated FLT3-ITD degradation via inactivating mTOR, a potent autophagy repressor. Notably, blockade of DHODH synergized with an FDA-approved FLT3i quizartinib in significantly impairing the growth of FLT3-ITD+ AML cells and improving tumor-bearing mice survival. We further demonstrated that DHODH blockade exhibited profound anti-proliferation effect on quizartinib-resistant cells in vitro and in vivo. In summary, this study demonstrates that the induction of degradation of FLT3-ITD protein by DHODH blockade may offer a promising therapeutic strategy for AML patients harboring FLT3-ITD mutation.
    DOI:  https://doi.org/10.1038/s41388-023-02848-7
  25. Oncol Res. 2023 ;31(6): 833-844
      Dihydroorotate dehydrogenase (DHODH) is a central enzyme of the de novo pyrimidine biosynthesis pathway and is a promising drug target for the treatment of cancer and autoimmune diseases. This study presents the identification of a potent DHODH inhibitor by proteomic profiling. Cell-based screening revealed that NPD723, which is reduced to H-006 in cells, strongly induces myeloid differentiation and inhibits cell growth in HL-60 cells. H-006 also suppressed the growth of various cancer cells. Proteomic profiling of NPD723-treated cells in ChemProteoBase showed that NPD723 was clustered with DHODH inhibitors. H-006 potently inhibited human DHODH activity in vitro, whereas NPD723 was approximately 400 times less active than H-006. H-006-induced cell death was rescued by the addition of the DHODH product orotic acid. Moreover, metabolome analysis revealed that H-006 treatment promotes marked accumulation of the DHODH substrate dihydroorotic acid. These results suggest that NPD723 is reduced in cells to its active metabolite H-006, which then targets DHODH and suppresses cancer cell growth. Thus, H-006-related drugs represent a potentially powerful treatment for cancer and other diseases.
    Keywords:  Anticancer agents; Differentiating agents; Drug target identification
    DOI:  https://doi.org/10.32604/or.2023.030241