J Nutr. 2023 Oct 17. pii: S0022-3166(23)72665-5. [Epub ahead of print]
BACKGROUND: Prolonged lactation provides substantial health benefits, potentially due to galactose as part of milk sugar lactose. Isocaloric replacing dietary glucose (16energy%) by galactose within a normal diet (64en% carbohydrates) during a 3 week post-weaning period provided substantial benefits on short- and long-term physiological and metabolic parameters at whole body level and liver in female mice, which might be attributable to intestinal function.
OBJECTIVE: The aim of this study was to investigate if partial dietary replacement of glucose by galactose alters intestinal metabolism underlying hepatic health effects.
METHODS: Proximal intestinal mucosa gene profiles in female mice using RNAseq technology were analyzed, validated, and correlated to hepatic health parameters.
RESULTS: Transcriptome analysis revealed that the presence of galactose primarily affected pathways involved in energy metabolism. In the subset of mitochondrial transcripts, a consistent higher expression was observed (78 of 80, all P.adjusted<0.1). Oxidative phosphorylation represented the most upregulated process (all top 10 pathways), independent of total mitochondrial mass (P=0.75). Moreover, galactose consistently upregulated carbohydrate metabolism pathways, specifically glycolysis till acetyl-CoA production, and fructose metabolism. Also, the expression of transcripts involved in these pathways negatively correlated with circulating serum amyloid A3 protein, a marker of hepatic inflammation (R[-0.61, -0.5], P[0.002, 0.01]). In agreement, CD163+ cells were decreased in the liver. Additionally, the expression of key fructolytic enzymes in the small intestinal mucosa negatively correlated with triglycerides accumulation in the liver (R[-0.45, -0.4], P[0.03, 0.05]).
CONCLUSIONS: Our results show for the first time in vivo the role of galactose as an oxidative phosphorylation activator. Moreover, the concept of intestinal cells acting as the body's metabolic gatekeeper is strongly supported, as they alter substrate availability and thereby contribute to the maintenance of metabolic homeostasis, protecting other organs, as evidenced by their potential ability to shield the liver from potential detrimental effects of fructose.
Keywords: Mouse; OXPHOS; RNA-seq; carbohydrate metabolism; galactose; gut-liver axis; lactose; mitochondria