bims-micaul Biomed News
on Mitochondrial calcium and ultrastructure
Issue of 2022–10–02
five papers selected by
Ariele Baggett, Thomas Jefferson University



  1. Front Cell Dev Biol. 2022 ;10 918691
      Endoplasmic reticulum (ER) functions critically depend on a suitable ATP supply to fuel ER chaperons and protein trafficking. A disruption of the ability of the ER to traffic and fold proteins leads to ER stress and the unfolded protein response (UPR). Using structured illumination super-resolution microscopy, we revealed increased stability and lifetime of mitochondrial associated ER membranes (MAM) during ER stress. The consequent increase of basal mitochondrial Ca2+ leads to increased TCA cycle activity and enhanced mitochondrial membrane potential, OXPHOS, and ATP generation during ER stress. Subsequently, OXPHOS derived ATP trafficking towards the ER was increased. We found that the increased lifetime and stability of MAMs during ER stress depended on the mitochondrial fusion protein Mitofusin2 (MFN2). Knockdown of MFN2 blunted mitochondrial Ca2+ effect during ER stress, switched mitochondrial F1FO-ATPase activity into reverse mode, and strongly reduced the ATP supply for the ER during ER stress. These findings suggest a critical role of MFN2-dependent MAM stability and lifetime during ER stress to compensate UPR by strengthening ER ATP supply by the mitochondria.
    Keywords:  ER stress; mitochondria; mitochondria-associated membranes (MAM); mitochondrial Ca2+; mitofusin 2
    DOI:  https://doi.org/10.3389/fcell.2022.918691
  2. Front Physiol. 2022 ;13 972104
      At any moment in time, cells coordinate and balance their calcium ion (Ca2+) fluxes. The term 'Ca2+ homeostasis' suggests that balancing resting Ca2+ levels is a rather static process. However, direct ER Ca2+ imaging shows that resting Ca2+ levels are maintained by surprisingly dynamic Ca2+ fluxes between the ER Ca2+ store, the cytosol, and the extracellular space. The data show that the ER Ca2+ leak, continuously fed by the high-energy consuming SERCA, is a fundamental driver of resting Ca2+ dynamics. Based on simplistic Ca2+ toolkit models, we discuss how the ER Ca2+ leak could contribute to evolutionarily conserved Ca2+ phenomena such as Ca2+ entry, ER Ca2+ release, and Ca2+ oscillations.
    Keywords:  Ca2+ homeostasis; Ca2+ ion analysis; Ca2+ leak; Ca2+ oscillation; ER Ca2+ imaging; ER Ca2+ store; SERCA; store-operated Ca2+ entry
    DOI:  https://doi.org/10.3389/fphys.2022.972104
  3. J Biol Chem. 2022 Sep 23. pii: S0021-9258(22)00976-0. [Epub ahead of print] 102533
      Mitochondrial morphology and dynamics maintain mitochondrial integrity by regulating its size, shape, distribution, and connectivity, thereby modulating various cellular processes. Several studies have established a functional link between mitochondrial dynamics, mitophagy, and cell death, but further investigation is needed to identify specific proteins involved in mitochondrial dynamics. Any alteration in the integrity of the mitochondria has severe ramifications that include disorders like cancer and neurodegeneration. In this study, we used budding yeast as a model organism and found that Pil1, the major component of the eisosome complex, also localizes to the periphery of mitochondria. Interestingly, the absence of Pil1 causes the branched tubular morphology of mitochondria to be abnormally fused or aggregated, whereas its overexpression leads to mitochondrial fragmentation. Most importantly, pil1Δ cells are defective in mitophagy and bulk autophagy, resulting in elevated levels of ROS and protein aggregates. In addition, we show that pil1Δ cells are more prone to cell death. Yeast two-hybrid analysis and co-immunoprecipitations show the interaction of Pil1 with two major proteins in mitochondrial fission, Fis1 and Dnm1. Additionally, our data suggest that the role of Pil1 in maintaining mitochondrial shape is dependent on Fis1 and Dnm1, but it functions independently in mitophagy and cell death pathways. Together, our data suggest that Pil1, an eisosome protein, is a novel regulator of mitochondrial morphology, mitophagy, and cell death.
    Keywords:  Saccharomyces cerevisiae; autophagy; cell death; mitochondria; mitophagy; protein aggregation; reactive oxygen species (ROS)
    DOI:  https://doi.org/10.1016/j.jbc.2022.102533
  4. Biomed Res Int. 2022 ;2022 6459585
      Oxidative stress is an imbalance between free radicals and the antioxidant system causing overgeneration of free radicals (oxygen-containing molecules) ultimately leading to oxidative damage in terms of lipid peroxidation, protein denaturation, and DNA mutation. Oxidative stress can activate autophagy to alleviate oxidative damage and maintain normal physiological activities of cells by degrading damaged organelles or local cytoplasm. When oxidative stress is not eliminated by autophagy, it activates the apoptosis cascade. This review provides a brief summary of mitochondrial-endoplasmic reticulum communication-mediated oxidative stress and autophagy. Mitochondria and endoplasmic reticulum being important organelles in cells are directly or indirectly connected to each other through mitochondria-associated endoplasmic reticulum membranes and jointly regulate oxidative stress and autophagy. The reactive oxygen species (ROS) produced by the mitochondrial respiratory chain are the main inducers of oxidative stress. Damaged mitochondria can be effectively cleared by the process of mitophagy mediated by PINK1/parkin pathway, Nix/BNIP3 pathways, and FUNDC1 pathway, avoiding excessive ROS production. However, the mechanism of mitochondrial-endoplasmic reticulum communication in the regulation of oxidative stress and autophagy is rarely known. For this reason, this review explores the mutual connection of mitochondria and endoplasmic reticulum in mediating oxidative stress and autophagy through ROS and Ca2+ and aims to provide part of the theoretical basis for alleviating oxidative stress through autophagy mediated by mitochondrial-endoplasmic reticulum communication.
    DOI:  https://doi.org/10.1155/2022/6459585
  5. J Am Heart Assoc. 2022 Sep 29. e024478
      Background Atrial fibrillation (AF) is the most common and progressive tachyarrhythmia. Diabetes is a common risk factor for AF. Recent research findings revealed that microtubule network disruption underlies AF. The microtubule network mediates the contact between sarcoplasmic reticulum and mitochondria, 2 essential organelles for normal cardiomyocyte function. Therefore, disruption of the microtubule network may impair sarcoplasmic reticulum and mitochondrial contacts (SRMCs) and subsequently cardiomyocyte function. The current study aims to determine whether microtubule-mediated SRMCs disruption underlies diabetes-associated AF. Methods and Results Tachypacing (mimicking AF) and high glucose (mimicking diabetes) significantly impaired contractile function in HL-1 cardiomyocytes (loss of calcium transient) and Drosophila (reduced heart rate and increased arrhythmia), both of which were prevented by microtubule stabilizers. Furthermore, both tachypacing and high glucose significantly reduced SRMCs and the key SRMC tether protein mitofusin 2 (MFN2) and resulted in consequent mitochondrial dysfunction, all of which were prevented by microtubule stabilizers. In line with pharmacological interventions with microtubule stabilizers, cardiac-specific knockdown of MFN2 induced arrhythmia in Drosophila and overexpression of MFN2 prevented tachypacing- and high glucose-induced contractile dysfunction in HL-1 cardiomyocytes and/or Drosophila. Consistently, SRMCs/MFN2 levels were significantly reduced in right atrial appendages of patients with persistent AF compared with control patients, which was aggravated in patients with diabetes. Conclusions SRMCs may play a critical role in clinical AF, especially diabetes-related AF. Furthermore, SRMCs can be regulated by microtubules and MFN2, which represent novel potential therapeutic targets for AF.
    Keywords:  Drosophila; atrial fibrillation; diabetes; microtubules; mitosusin 2; sarcoplasmic reticulum‐mitochondrial contacts
    DOI:  https://doi.org/10.1161/JAHA.121.024478