bims-micaul Biomed News
on Mitochondrial calcium and ultrastructure
Issue of 2022–10–09
five papers selected by
Ariele Baggett, Thomas Jefferson University



  1. Philos Trans R Soc Lond B Biol Sci. 2022 Nov 21. 377(1864): 20210320
      Mitochondrial dysfunction in cardiomyocytes is a hallmark of heart failure development. Although initial studies recognized the importance of different mitochondrial subpopulations, there is a striking lack of direct comparison of intrafibrillar (IF) versus perinuclear (PN) mitochondria during the development of HF. Here, we use multiple approaches to examine the morphology and functional properties of IF versus PN mitochondria in pressure overload-induced cardiac remodelling in mice, and in non-failing and failing human cardiomyocytes. We demonstrate that PN mitochondria from failing cardiomyocytes are more susceptible to depolarization of mitochondrial membrane potential, reactive oxygen species generation and impairment in Ca2+ uptake compared with IF mitochondria at baseline and under physiological stress protocol. We also demonstrate, for the first time to our knowledge, that under normal conditions PN mitochondrial Ca2+ uptake shapes nucleoplasmic Ca2+ transients (CaTs) and limits nucleoplasmic Ca2+ loading. The loss of PN mitochondrial Ca2+ buffering capacity translates into increased nucleoplasmic CaTs and may explain disproportionate rise in nucleoplasmic [Ca2+] in failing cardiomyocytes at increased stimulation frequencies. Therefore, a previously unidentified benefit of restoring the mitochondrial Ca2+ uptake may be normalization of nuclear Ca2+ signalling and alleviation of altered excitation-transcription, which could be an important therapeutic approach to prevent adverse cardiac remodelling. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
    Keywords:  heart failure; nuclear calcium; perinuclear mitochondria; remodelling; transverse aortic constriction
    DOI:  https://doi.org/10.1098/rstb.2021.0320
  2. Biomed Res Int. 2022 ;2022 6889278
       Background: Mitochondria fuse to form elongated networks which are more tolerable to stress and injury. Ischemic pre- and postconditioning (IPC and IPost, respectively) are established cardioprotective strategies in the preclinical setting. Whether IPC and IPost modulates mitochondrial morphology is unknown. We hypothesize that the protective effects of IPC and IPost may be conferred via preservation of mitochondrial network.
    Methods: IPC and IPost were applied to the H9c2 rat myoblast cells, isolated adult primary murine cardiomyocytes, and the Langendorff-isolated perfused rat hearts. The effects of IPC and IPost on cardiac cell death following ischemia-reperfusion injury (IRI), mitochondrial morphology, and gene expression of mitochondrial-shaping proteins were investigated.
    Results: IPC and IPost successfully reduced cardiac cell death and myocardial infarct size. IPC and IPost maintained the mitochondrial network in both H9c2 and isolated adult primary murine cardiomyocytes. 2D-length measurement of the 3 mitochondrial subpopulations showed that IPC and IPost significantly increased the length of interfibrillar mitochondria (IFM). Gene expression of the pro-fusion protein, Mfn1, was significantly increased by IPC, while the pro-fission protein, Drp1, was significantly reduced by IPost in the H9c2 cells. In the primary cardiomyocytes, gene expression of both Mfn1 and Mfn2 were significantly upregulated by IPC and IPost, while Drp1 was significantly downregulated by IPost. In the Langendorff-isolated perfused heart, gene expression of Drp1 was significantly downregulated by both IPC and IPost.
    Conclusion: IPC and IPost-mediated upregulation of pro-fusion proteins (Mfn1 and Mfn2) and downregulation of pro-fission (Drp1) promote maintenance of the interconnected mitochondrial network, ultimately conferring cardioprotection against IRI.
    DOI:  https://doi.org/10.1155/2022/6889278
  3. Philos Trans R Soc Lond B Biol Sci. 2022 Nov 21. 377(1864): 20210329
      Cardiac dyads are the site of communication between the sarcoplasmic reticulum (SR) and infoldings of the sarcolemma called transverse-tubules (TT). During heart excitation-contraction coupling, Ca2+-influx through L-type Ca2+ channels in the TT is amplified by release of Ca2+-from the SR via type 2 ryanodine receptors, activating the contractile apparatus. Key proteins involved in cardiac dyad function are bridging integrator 1 (BIN1), junctophilin 2 and caveolin 3. The work presented here aims to reconstruct the evolutionary history of the cardiac dyad, by surveying the scientific literature for ultrastructural evidence of these junctions across all animal taxa; phylogenetically reconstructing the evolutionary history of BIN1; and by comparing peptide motifs involved in TT formation by this protein across metazoans. Key findings are that cardiac dyads have been identified in mammals, arthropods and molluscs, but not in other animals. Vertebrate BIN1 does not group with members of this protein family from other taxa, suggesting that invertebrate BINs are paralogues rather orthologues of this gene. Comparisons of BIN1 peptide sequences of mammals with those of other vertebrates reveals novel features that might contribute to TT and dyad formation. The analyses presented here suggest that the cardiac dyad evolved independently several times during metazoan evolution: an unexpected observation given the diversity of heart structure and function between different animal taxa. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
    Keywords:  bridging integrator 1; dyad; evolution; heart; sarcoplasmic reticulum; t-tubule
    DOI:  https://doi.org/10.1098/rstb.2021.0329
  4. Philos Trans R Soc Lond B Biol Sci. 2022 Nov 21. 377(1864): 20210322
      The heart meets the high energy demands of constant muscle contraction and calcium cycling primarily through the conversion of fatty acids into adenosine triphosphate (ATP) by a large volume of mitochondria. As such, the spatial relationships among lipid droplets (LDs), mitochondria, the sarcotubular system and the contractile apparatus are critical to the efficient distribution of energy within the cardiomyocyte. However, the connectivity among components of the cardiac cellular energy distribution system during postnatal development remains unclear. Here, we use volume electron microscopy to demonstrate that the sarcomere branches uniting the myofibrillar network occur more than twice as frequently during early postnatal development as in mature cardiomyocytes. Moreover, we show that the mitochondrial networks arranged in parallel to the contractile apparatus are composed of larger, more compact mitochondria with greater connectivity to adjacent mitochondria in mature as compared with early postnatal cardiomyocytes. Finally, we find that connectivity among mitochondria, LDs and the sarcotubular network is greater in developing than in mature muscles. These data suggest that physical connectivity among cellular structures may facilitate the communication needed to coordinate developmental processes within the cardiac muscle cell. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
    Keywords:  heart development; lipid droplets; mitochondria; sarcomere branching
    DOI:  https://doi.org/10.1098/rstb.2021.0322
  5. Philos Trans R Soc Lond B Biol Sci. 2022 Nov 21. 377(1864): 20210321
      The ontogeny of the heart describes its development from the fetal to the adult stage. In newborn mammals, blood pressure and thus cardiac performance are relatively low. The cardiomyocytes are thin, and with a central core of mitochondria surrounded by a ring of myofilaments, while the sarcoplasmic reticulum (SR) is sparse. During development, as blood pressure and performance increase, the cardiomyocytes become more packed with structures involved in excitation-contraction (e-c) coupling (SR and myofilaments) and the generation of ATP (mitochondria) to fuel the contraction. In parallel, the e-c coupling relies increasingly on calcium fluxes through the SR, while metabolism relies increasingly on fatty acid oxidation. The development of transverse tubules and SR brings channels and transporters interacting via calcium closer to each other and is crucial for e-c coupling. However, for energy transfer, it may seem counterintuitive that the increased structural density restricts the overall ATP/ADP diffusion. In this review, we discuss how this is because of the organization of all these structures forming modules. Although the overall diffusion across modules is more restricted, the energy transfer within modules is fast. A few studies suggest that in failing hearts this modular design is disrupted, and this may compromise intracellular energy transfer. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
    Keywords:  cardiomyocytes; energy transfer; excitation–contraction coupling; heart; intracellular diffusion; ontogeny
    DOI:  https://doi.org/10.1098/rstb.2021.0321