bims-micpro Biomed News
on Discovery and characterization of microproteins
Issue of 2023‒09‒10
three papers selected by
Thomas Farid Martínez, University of California, Irvine



  1. J Cell Biochem. 2023 Sep 08.
      The MYCC and MYCN loci are each associated with two upstream open reading frames (uORFs) potentially encoding small proteins (9-21 kDa). We previously demonstrated that uORFs mrtl and MYCHEX1 of MYCC are translated, and their protein products may function to regulate the expression of the "parent" oncogene. We hypothesized that a similar relationship might exist between MYCN and its two uORFs: MYCNOT and MNOP, and investigated the uORF-encoded proteins associated with MYCN to confirm their expression and intracellular location in neuroblastoma and medulloblastoma cells and tissues. MNOP, MYCNOT, mrtl, and MYCHEX1 were readily detected via reverse transcription polymerase chain reaction and Western blot analysis in tumor cell lines. In tumor tissue, MNOP protein expression was confirmed; however, MCYNOT generated from alternative splicing MYCNΔ1b mRNA was not detected. Immunofluorescence staining of MYCNOT displayed multiple bright foci in the nucleus and diffuse staining in the cytoplasm, suggesting that this small protein may function in both the nucleus and cytoplasm. Upon JQ1 treatment, MYCN, MYCNOT, and mrtl decreased substantially or disappeared completely in three different tumor cell lines. Significant levels of apoptosis were observed in each pediatric embryonal tumor cell line but not T47D breast carcinoma cells, suggesting that response to JQ1 transcriptional inhibition is greatest in tumor cells, which depend on MYC to maintain an undifferentiated phenotype. In conclusion, both MYCN uORF-encoded proteins MNOP and MYCNOT, together with the two MYCC uORF-encoded proteins mrtl and MYCHEX1 were detected simultaneously in tumor cell lines and tumor tissues. These four distinct proteins are translated from the "5'-untranslated region" of MYCN or MYCC mRNA and display consistent distribution patterns within the cell. Additional studies to further elucidate the physiological and pathological roles of these uORF-encoded proteins are warranted, as insights gained could inform new strategies for modulating MYC-family oncogenes by targeting their uORFs.
    Keywords:  MNOP; MYCN gene; MYCNOT; pediatric embryonal tumors; small protein; upstream open reading frames
    DOI:  https://doi.org/10.1002/jcb.30470
  2. Nature. 2023 Sep 06.
      Translational reprogramming allows organisms to adapt to changing conditions. Upstream start codons (uAUGs), which are prevalently present in mRNAs, have crucial roles in regulating translation by providing alternative translation start sites1-4. However, what determines this selective initiation of translation between conditions remains unclear. Here, by integrating transcriptome-wide translational and structural analyses during pattern-triggered immunity in Arabidopsis, we found that transcripts with immune-induced translation are enriched with upstream open reading frames (uORFs). Without infection, these uORFs are selectively translated owing to hairpins immediately downstream of uAUGs, presumably by slowing and engaging the scanning preinitiation complex. Modelling using deep learning provides unbiased support for these recognizable double-stranded RNA structures downstream of uAUGs (which we term uAUG-ds) being responsible for the selective translation of uAUGs, and allows the prediction and rational design of translating uAUG-ds. We found that uAUG-ds-mediated regulation can be generalized to human cells. Moreover, uAUG-ds-mediated start-codon selection is dynamically regulated. After immune challenge in plants, induced RNA helicases that are homologous to Ded1p in yeast and DDX3X in humans resolve these structures, allowing ribosomes to bypass uAUGs to translate downstream defence proteins. This study shows that mRNA structures dynamically regulate start-codon selection. The prevalence of this RNA structural feature and the conservation of RNA helicases across kingdoms suggest that mRNA structural remodelling is a general feature of translational reprogramming.
    DOI:  https://doi.org/10.1038/s41586-023-06500-y
  3. iScience. 2023 Sep 15. 26(9): 107558
      LINC00116 encodes a microprotein first identified as Mitoregulin (MTLN), where it was reported to localize to the inner membrane of mitochondria to regulate fatty acid oxidation and oxidative phosphorylation. These initial discoveries were followed by reports with differing findings about its molecular functions and submitochondrial localization. To clarify the apparent discrepancies, we constructed multiple orthogonal methods of determining the localization of MTLN, including split GFP-based reporters that enable efficient and reliable topology analyses for microproteins. These methods unequivocally demonstrate MTLN primarily localizes to the outer membrane of mitochondria, where it interacts with enzymes of fatty acid metabolism including CPT1B and CYB5B. Loss of MTLN causes the accumulation of very long-chain fatty acids (VLCFAs), especially docosahexaenoic acid (DHA). Intriguingly, loss of MTLN protects mice against western diet/fructose-induced insulin-resistance, suggests a protective effect of VLCFAs in this context. MTLN thus serves as an attractive target to control the catabolism of VLCFAs.
    Keywords:  Biochemistry; Biological sciences; Cell biology; Molecular biology
    DOI:  https://doi.org/10.1016/j.isci.2023.107558