Int J Mol Sci. 2024 Jun 28. pii: 7166. [Epub ahead of print]25(13):
In recent years, interest in very small proteins (µ-proteins) has increased significantly, and they were found to fulfill important functions in all prokaryotic and eukaryotic species. The halophilic archaeon Haloferax volcanii encodes about 400 µ-proteins of less than 70 amino acids, 49 of which contain at least two C(P)XCG motifs and are, thus, predicted zinc finger proteins. The determination of the NMR solution structure of HVO_2753 revealed that only one of two predicted zinc fingers actually bound zinc, while a second one was metal-free. Therefore, the aim of the current study was the homologous production of additional C(P)XCG proteins and the quantification of their zinc content. Attempts to produce 31 proteins failed, underscoring the particular difficulties of working with µ-proteins. In total, 14 proteins could be produced and purified, and the zinc content was determined. Only nine proteins complexed zinc, while five proteins were zinc-free. Three of the latter could be analyzed using ESI-MS and were found to contain another metal, most likely cobalt or nickel. Therefore, at least in haloarchaea, the variability of predicted C(P)XCG zinc finger motifs is higher than anticipated, and they can be metal-free, bind zinc, or bind another metal. Notably, AlphaFold2 cannot correctly predict whether or not the four cysteines have the tetrahedral configuration that is a prerequisite for metal binding.
Keywords: AlphaFold2; C(P)XCG motif; ESI; Haloferax volcanii; archaea; mass spectrometry; metal-binding proteins; microproteins; small proteins; zinc finger