bims-microg Biomed News
on Microglia in health and disease
Issue of 2024–10–13
thirty-one papers selected by
Marcus Karlstetter, Universität zu Köln



  1. Nat Commun. 2024 Oct 09. 15(1): 8757
      Proliferative vitreoretinopathy is a vision-threatening response to penetrating ocular injury, for which there is no satisfactory treatment. In this disorder, retinal pigment epithelial cells, abandon their attachment to Bruch's membrane on the scleral side of the retina, transform into motile fibroblast-like cells, and migrate through the retinal wound to the vitreal surface of the retina, where they secrete membrane-forming proteins. Annexin A2 is a calcium-regulated protein that, in complex with S100A10, assembles plasmin-forming proteins at cell surfaces. Here, we show that, in proliferative vitreoretinopathy, recruitment of macrophages and directed migration of retinal pigment epithelial cells are annexin A2-dependent, and stimulated by macrophage inflammatory protein-1α/β. These factors induce translocation of annexin A2 to the cell surface, thus enabling retinal pigment epithelial cell migration following injury; our studies reveal further that treatment of mice with intraocular antibody to either annexin A2 or macrophage inflammatory protein dampens the development of proliferative vitreoretinopathy in mice.
    DOI:  https://doi.org/10.1038/s41467-024-52675-x
  2. Small. 2024 Oct 06. e2405781
      The activated M1-like microglia induced neuroinflammation is the critical pathogenic event in Alzheimer's disease (AD). Microglial polarization from pro-inflammatory M1 toward anti-inflammatory M2 phenotype is a promising strategy. To efficiently accomplish this, amyloid-β (Aβ) aggregates as the culprit of M1 microglia activation should be uprooted. Interestingly, this study finds out that the self-reassembly of curcumin molecules into carrier-free curcumin nanoparticles (CNPs) exhibits multivalent binding with Aβ to achieve higher inhibitory effect on Aβ aggregation, compared to free curcumin with monovalent effect. Based on this, the CNPs loaded cardiolipin liposomes are developed for efficient microglial polarization. After intranasal administration, the liposomes decompose to release CNPs and cardiolipin in response to AD oxidative microenvironment. The CNPs inhibit Aβ aggregation and promote Aβ phagocytosis/clearance in microglia, removing roadblock to microglial polarization. Subsequently, CNPs are endocytosed by microglia and inhibit TLR4/NF-κB pathway for microglia polarization (M1→M2). Meanwhile, cardiolipin is identified as signaling molecule to normalize microglial dysfunction to prevent pro-inflammatory factors release. In AD transgenic mice, neuroinflammation, Aβ burden, and memory deficits are relieved after treatment. Through combined attack by extracellularly eradicating roadblock of Aβ aggregation and intracellularly inhibiting inflammation-related pathways, this nanotechnology assisted delivery system polarizes microglia efficiently, providing a reliable strategy in AD treatment.
    Keywords:  Alzheimer's disease; intranasal delivery; microglia; neuroinflammation; pure nanodrug
    DOI:  https://doi.org/10.1002/smll.202405781
  3. J Neuroinflammation. 2024 Oct 10. 21(1): 256
       BACKGROUND: Adverse events in early life can have impact lasting into adulthood. We investigated the long-term effects of systemic inflammation during postnatal development on adult microglial responses to lipopolysaccharide (LPS) in two CNS regions (cortex, cervical spinal cord) in male and female rats.
    METHODS: Inflammation was induced in Sprague-Dawley rats by LPS (1 mg/kg) administered intraperitoneally during postnatal development at P7, P12 or P18. As adults (12 weeks of age), the rats received a second LPS dose (1 mg/kg). Control rats received saline. Microglia were isolated 3 h post-LPS followed by gene expression analysis via qRT-PCR for pro-inflammatory (IL-6, iNOS, Ptgs2, C/EBPb, CD14, CXCL10), anti-inflammatory (CD68, Arg-1), and homeostatic genes (P2Y12, Tmemm119). CSF-1 and CX3CL1 mRNAs were analyzed in microglia-free homogenates.
    RESULTS: Basal gene expression in adult microglia was largely unaffected by postnatal inflammation. Adult cortical microglial pro-inflammatory gene responses to LPS were either unchanged or attenuated in rats exposed to LPS during postnatal development. Ptgs2, C/EBPb, CXCL10 and Arg-1 were the most affected genes, with expression significantly downregulated vs. rats without postnatal LPS. Spinal microglia were affected most by LPS at P18, with mixed and sometimes opposing effects on proinflammatory genes in males vs. females. Overall, male cortical vs. spinal microglia were more affected by postnatal LPS. Females were affected in both cortex and spinal cord, but the effect was dependent on timing of postnatal LPS. Overall, inflammatory challenge at P18 had greater effect on adult microglia vs. challenge at P12 or P7.
    CONCLUSIONS: Long-lasting effects of postnatal inflammation on adult microglia depend on postnatal timing, CNS region and sex.
    DOI:  https://doi.org/10.1186/s12974-024-03245-x
  4. J Neuroinflammation. 2024 Oct 10. 21(1): 257
      Progranulin (PGRN), which is produced in neurons and microglia, is a neurotrophic and anti-inflammatory glycoprotein. Human loss-of-function mutations cause frontotemporal dementia, and PGRN knockout (KO) mice are a model for dementia. In addition, PGRN KO mice exhibit severe phenotypes in models of traumatic or ischemic central nervous system (CNS) disorders, including traumatic brain injury (TBI). It is unknown whether restoration of progranulin expression in neurons (and not in microglia) might be sufficient to prevent excessive TBI-evoked brain damage. To address this question, we generated mice with Nestin-Cre-driven murine PGRN expression in a PGRN KO line (PGRN-KONestinGrn) to rescue PGRN in neurons. PGRN expression analysis in primary CNS cell cultures from naïve mice and in (non-) injured brain tissue from PGRN-KONestinGrn revealed expression of PGRN in neurons but not in microglia. After experimental TBI, examination of the structural brain damage at 5 days post-injury (dpi) showed that the TBI-induced loss of brain tissue and hippocampal neurons was exacerbated in PGRN-KOGrnflfl mice (PGRN knockout with the mGrn fl-STOP-fl allele, Cre-negative), as expected, whereas the tissue damage in PGRN-KONestinGrn mice was similar to that in PGRN-WT mice. Analysis of CD68+ immunofluorescent microglia and Cd68 mRNA expression showed that excessive microglial activation was rescued in PGRN-KONestinGrn mice, and the correlation of brain injury with Cd68 expression suggested that Cd68 was a surrogate marker for excessive brain injury caused by PGRN deficiency. The results show that restoring neuronal PGRN expression was sufficient to rescue the exacerbated neuropathology of TBI caused by PGRN deficiency, even in the absence of microglial PGRN. Hence, endogenous microglial PGRN expression was not essential for the neuroprotective or anti-inflammatory effects of PGRN after TBI in this study.
    Keywords:  CD68; Microglia; Neuroinflammation; Neuropathology; Neuroprotection; Progranulin; Therapy; Traumatic brain injury
    DOI:  https://doi.org/10.1186/s12974-024-03249-7
  5. J Neuroinflammation. 2024 Oct 07. 21(1): 252
       BACKGROUND: Neuroinflammation reportedly plays a critical role in the pathogenesis of sepsis-associated encephalopathy (SAE). We previously reported that circulating plasma extracellular vesicles (EVs) from septic mice are proinflammatory. In the current study, we tested the role of sepsis plasma EVs in neuroinflammation.
    METHODS: To track EVs in cells and tissues, HEK293T cell-derived EVs were labeled with the fluorescent dye PKH26. Cecal ligation and puncture (CLP) was conducted to model polymicrobial sepsis in mice. Plasma EVs were isolated by ultracentrifugation and their role in promoting neuronal inflammation was tested following intracerebroventricular (ICV) injection. miRNA inhibitors (anti-miR-146a, -122, -34a, and -145a) were applied to determine the effects of EV cargo miRNAs in the brain. A cytokine array was performed to profile microglia-released protein mediators. TLR7- or MyD88-knockout (KO) mice were utilized to determine the underlying mechanism of EVs-mediated neuroinflammation.
    RESULTS: We observed the uptake of fluorescent PKH26-EVs inside the cell bodies of both microglia and neurons. Sepsis plasma EVs led to a dose-dependent cytokine release in cultured microglia, which was partially attenuated by miRNA inhibitors against the target miRNAs and in TLR7-KO cells. When administered via the ICV, sepsis plasma EVs resulted in a marked increase in the accumulation of innate immune cells, including monocyte and neutrophil and cytokine gene expression, in the brain. Although sepsis plasma EVs had no direct effect on cytokine production or neuronal injury in vitro, the conditioned media (CM) of microglia treated with sepsis plasma EVs induced neuronal cell death as evidenced by increased caspase-3 cleavage and Annexin-V staining. Cytokine arrays and bioinformatics analysis of the microglial CM revealed multiple cytokines/chemokines and other factors functionally linked to leukocyte chemotaxis and migration, TLR signaling, and neuronal death. Moreover, sepsis plasma EV-induced brain inflammation in vivo was significantly dependent on MyD88.
    CONCLUSIONS: Circulating plasma EVs in septic mice cause a microglial proinflammatory response in vitro and a brain innate immune response in vivo, some of which are in part mediated by TLR7 in vitro and MyD88 signaling in vivo. These findings highlight the importance of circulating EVs in brain inflammation during sepsis.
    Keywords:  Extracellular miRNA; Extracellular vesicles (EVs); Microglia; Myeloid differentiation primary response 88 (MyD88); Neuroinflammation; Neuronal apoptosis; Sepsis; Sepsis-associated encephalopathy (SAE); Toll-like receptor 7 (TLR7)
    DOI:  https://doi.org/10.1186/s12974-024-03250-0
  6. J Neuroinflammation. 2024 Oct 09. 21(1): 254
      In neuroinflammation, distinguishing microglia from macrophages and identifying microglial-specific biomarkers in peripheral blood pose significant challenges. This study comprehensively profiled the extracellular vesicles (EVs) of microglia and macrophages, respectively, revealing co-expressed EVs with UCHL1 and CX3CR1 as EVs derived specifically from microglia in human blood. After extensive validation, using optimized nano flow cytometry, we evaluated plasma CX3CR1+/UCHL1+ EVs across clinical cohorts [multiple sclerosis (MS), HTLV-1 associated myelopathy (HAM), Alzheimer's disease (AD), and Parkinson's disease (PD)], along with established neurodegenerative markers (NMDAR2A and NFL). The findings discovered a notable rise in CX3CR1+/UCHL1+ EVs in MS, particularly heightened in HAM, in contrast to controls. Conversely, AD and PD exhibited unaltered or diminished levels of microglial EVs. An integrated model of CX3CR1+/UCHL1+, NMDAR2A+, and NFL+ EVs demonstrated promising diagnostic potential for distinguishing MS from controls and HAM. As to the disease duration, CX3CR1+/UCHL1+ EVs increased in the initial five years of MS, stabilizing thereafter, whereas NMDAR2A+ and NFL+ EVs remained stable initially but increased significantly in the subsequent five years, suggesting their correlation with disease duration. This study uncovers unique blood microglial EVs with potential as biomarkers for MS diagnosis, differentiation from HAM, and correlation with disease duration.
    Keywords:  Biomarker; CX3CR1; Extracellular vesicles; Microglia; Multiple sclerosis; UCHL1
    DOI:  https://doi.org/10.1186/s12974-024-03243-z
  7. J Neuroinflammation. 2024 Oct 05. 21(1): 251
      Neuroinflammation has been implicated in the pathogenesis of several neurologic and psychiatric disorders. Microglia are key drivers of neuroinflammation and, in response to different inflammatory stimuli, overexpress a proinflammatory signature of genes. Among these, Ch25h is a gene overexpressed in brain tissue from Alzheimer's disease as well as various mouse models of neuroinflammation. Ch25h encodes cholesterol 25-hydroxylase, an enzyme upregulated in activated microglia under conditions of neuroinflammation, that hydroxylates cholesterol to form 25-hydroxycholesterol (25HC). 25HC can be further metabolized to 7α,25-dihydroxycholesterol, which is a potent chemoattractant of leukocytes. We have previously shown that 25HC increases the production and secretion of the proinflammatory cytokine, IL-1β, by primary mouse microglia treated with lipopolysaccharide (LPS). In the present study, wildtype (WT) and Ch25h-knockout (KO) mice were peripherally administered LPS to induce an inflammatory state in the brain. In LPS-treated WT mice, Ch25h expression and 25HC levels increased in the brain relative to vehicle-treated WT mice. Among LPS-treated WT mice, females produced significantly higher levels of 25HC and showed transcriptomic changes reflecting higher levels of cytokine production and leukocyte migration than WT male mice. However, females were similar to males among LPS-treated KO mice. Ch25h-deficiency coincided with decreased microglial activation in response to systemic LPS. Proinflammatory cytokine production and intra-parenchymal infiltration of leukocytes were significantly lower in KO compared to WT mice. Amounts of IL-1β and IL-6 in the brain strongly correlated with 25HC levels. Our results suggest a proinflammatory role for 25HC in the brain following peripheral administration of LPS.
    Keywords:  25-hydroxycholesterol; Alzheimer’s disease; Cholesterol-25-hydroxylase; Cytokines; Lipopolysaccharide; Microglial activation; Neuroinflammation; Neutrophil infiltration; Toll-like receptor-4
    DOI:  https://doi.org/10.1186/s12974-024-03233-1
  8. Neurobiol Dis. 2024 Oct 05. pii: S0969-9961(24)00295-X. [Epub ahead of print]201 106695
       BACKGROUND: Spontaneous intracerebral hemorrhage (ICH) is associated with alarmingly high rates of disability and mortality, and current therapeutic options are suboptimal. A critical component of ICH pathology is the initiation of a robust inflammatory response, often termed "cytokine storm," which amplifies the secondary brain injury following the initial hemorrhagic insult. The precise sources and consequences of this cytokine-driven inflammation are not fully elucidated, necessitating further investigation.
    METHODS: To address this knowledge gap, our study conducted a comprehensive cytokine profiling using Luminex® assays, assessing 23 key cytokines. We then employed single-cell RNA sequencing and spatial transcriptomics at three critical time points post-ICH: the hyperacute, acute, and subacute phases. Integrating these multimodal analyses allowed us to identify the cellular origins of cytokines and elucidate their mechanisms of action.
    RESULTS: Luminex® cytokine assays revealed a significant upregulation of IL-6 and IL-1β levels at the 24-h post-ICH time point. Through the integration of scRNA-seq and spatial transcriptomics in the hemorrhagic hemisphere of rats, we observed a pronounced activation of cytokine-related signaling pathways within the choroid plexus. Initially, immune cell presence was sparse, but it surged 24 h post-ICH, particularly in the choroid plexus, indicating a substantial shift in the immune microenvironment. We traced the source of IL-1β and IL-6 to endothelial cells, establishing a link to pyroptosis. Endothelial pyroptosis post-ICH induced the production of IL-1β and IL-6, which activated microglial polarization characterized by elevated expression of Msr1, Lcn2, and Spp1 via the NF-κB pathway in the choroid plexus. Furthermore, we identified neuronal populations undergoing apoptosis, mediated by the Lcn2-SLC22A17 pathway in response to IL-1β and IL-6 signaling. Notably, the inhibition of pyroptosis using VX-765 significantly mitigated neurological impairments.
    CONCLUSIONS: Our study provides evidence that endothelial pyroptosis, characterized by the release of IL-1β and IL-6, triggers microglial polarization through NF-κB pathway activation, ultimately leading to microglia-mediated neuronal apoptosis in the choroid plexus post-ICH. These findings suggest that targeted therapeutic strategies aimed at mitigating endothelial cell pyroptosis and neutralizing inflammatory cytokines may offer neuroprotection for both microglia and neurons, presenting a promising avenue for ICH treatment.
    Keywords:  Endothelial pyroptosis; Luminex® cytokine assays; Microglia polarization; Neuron apoptosis; Single-cell and spatial transcriptome sequencing
    DOI:  https://doi.org/10.1016/j.nbd.2024.106695
  9. Cell Rep. 2024 Oct 08. pii: S2211-1247(24)01178-1. [Epub ahead of print]43(10): 114827
      Polo-like kinase 2 (PLK2) is a serine/threonine protein kinase associated with the regulation of synaptic plasticity and centriole duplication. We identify PLK2 as a crucial early-response gene in lipopolysaccharide (LPS)-stimulated microglial cells. Knockdown or inhibition of PLK2 remarkably attenuates LPS-induced expression of proinflammatory factors in microglial cells by suppressing the inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ)-nuclear factor (NF)-κB signaling pathway. We identify heat shock protein 90 alpha (HSP90α), a regulator of IKKβ activity, as a novel PLK2 substrate. Knockdown or pharmacological inhibition of HSP90α abolishes PLK2-mediated activation of NF-κB transcriptional activity and microglial inflammatory activation. Furthermore, phosphoproteomic analysis pinpoints Ser252 and Ser263 on HSP90α as novel phosphorylation targets of PLK2. Lastly, conditional knockout of PLK2 in microglial cells dramatically ameliorates neuroinflammation and subsequent dopaminergic neuron loss in an intracranial LPS-induced mouse Parkinson's disease (PD) model. The present study reveals that PLK2 promotes microglial activation through the phosphorylation of HSP90α and subsequent activation of the IKKβ-NF-κB signaling pathway.
    Keywords:  CP: Immunology; CP: Neuroscience; NF-κB signaling; Polo-like kinase 2; heat shock protein 90 alpha; lipopolysaccharide; microglia; neurodegenerative disease; neuroinflammation
    DOI:  https://doi.org/10.1016/j.celrep.2024.114827
  10. Br J Pharmacol. 2024 Oct 07.
       BACKGROUND AND PURPOSE: Pathological retinal angiogenesis is a typical manifestation of vision-threatening ocular diseases. Many patients exhibit poor response or resistance to anti-vascular endothelial growth factor (VEGF) agents. Bruton's tyrosine kinase (BTK) controls the proliferation and function of immune cells. Therefore, we examined the anti-inflammatory and anti-angiogenic effects of BTK inhibition on retinal angiogenesis.
    EXPERIMENTAL APPROACH: Retinal neovascularisation and vascular leakage in oxygen-induced retinopathy in C57/BL6J mice were assessed by whole-mount retinal immunofluorescence. PLX5622 was used to deplete microglia and Rag1-knockout mice were used to test the contribution of lymphocytes to the effects of BTK inhibition. The cytokines, activation markers, inflammatory and immune-regulatory activities of retinal microglia/macrophages were detected using qRT-PCR and immunofluorescence. NLRP3 was detected by western blotting, and the effects of BTK inhibition on the co-culture of microglia and human retinal microvascular endothelial cells (HRMECs) were examined.
    KEY RESULTS: BTK inhibition suppressed pathological angiogenesis and vascular leakage, and significantly reduced retinal inflammation, which involved microglia/macrophages but not lymphocytes. BTK inhibition increased anti-inflammatory factors and reduced pro-inflammatory cytokines that resulted from NLRP3 inflammasome activation. BTK inhibition suppressed the inflammatory activity of microglia/macrophages, and acted synergistically with anti-VEGF without retinal toxicity. Moreover, the supernatant of microglia incubated with BTK-inhibitor reduced the proliferation, tube formation and sprouting of HRMECs.
    CONCLUSION AND IMPLICATIONS: BTK inhibition suppressed retinal neovascularisation and vascular leakage by modulating the inflammatory activity of microglia and macrophages. Our study suggests BTK inhibition as a novel and promising approach for alleviating pathological retinal angiogenesis.
    Keywords:  Bruton's tyrosine kinase; anti‐angiogenic drugs; pathological angiogenesis; retinal microglia/macrophages
    DOI:  https://doi.org/10.1111/bph.17344
  11. Biomed Pharmacother. 2024 Oct 09. pii: S0753-3322(24)01416-1. [Epub ahead of print]180 117530
      It was previously shown that SHPL-49, a glycoside derivative of salidroside formed through structural modification, exhibited neuroprotective effects in a rat cerebral ischemia model of permanent middle cerebral artery occlusion (pMCAO). Additionally, SHPL-49 enhanced the mRNA expression of vascular endothelial growth factor-a (Vegf-a) in macrophages. Microglia, functioning as resident macrophages within the brain, promptly respond to cerebral ischemia and engage in interactions with the cells of the Glial-Vascular Unit to orchestrate nerve injury responses. We postulated that the neuroprotective effects of SHPL-49 were mediated through microglia-dependent amelioration of endothelial dysfunction following cerebral ischemia. The present study demonstrates that SHPL-49 effectively mitigated microglia-dependent endothelial dysfunction in the pMCAO model by upregulating the expression of VEGF and suppressing the release of MMP-9 from microglia. Further MRI analyses confirmed that SHPL-49 significantly reduced nerve and endothelial function when microglia were depleted in the brains of pMCAO rats. The above phenomenon was also confirmed in the in vitro experiment investigating microglia-mediated brain endothelial cell function. Furthermore, we discovered that SHPL-49 activates the VEGFR2/Akt/eNOS pathways in endothelial cells and suppresses the p38 MAPK/MMP-9 pathways in microglia cells, thereby facilitating brain endothelial cell protection. Altogether, we have demonstrated that SHPL-49 effectively ameliorates endothelial dysfunction induced by cerebral ischemia through a microglia-dependent mechanism, thereby providing more valuable insights and references for the clinical evaluation of SHPL-49 injection for ischemic stroke.
    Keywords:  Cerebral ischemia; Endothelial dysfunction; Microglia; Neuroprotection; SHPL-49
    DOI:  https://doi.org/10.1016/j.biopha.2024.117530
  12. Invest Ophthalmol Vis Sci. 2024 Oct 01. 65(12): 18
       Purpose: The long-term evaluation of RPE65 gene augmentation initiated in middle-aged RPE65 mutant dogs previously uncovered notable inter-animal and intra-retinal variations in treatment efficacy. The study aims to gain deeper insights into the status of mutant retinas and assess the treatment impact.
    Methods: Immunohistochemistry utilizing cell-specific markers and reverse transcription-quantitative PCR (RT-qPCR) analysis were conducted on archival retinal sections from normal and RPE65 mutant dogs.
    Results: Untreated middle-aged mutant retinas exhibited marked downregulation in the majority of 20 examined genes associated with key retinal pathways. These changes were accompanied by a moderate increase in microglia numbers, altered expression patterns of glial-neuronal transmitter recycling proteins, and gliotic responses in Müller glia. Analysis of advanced-aged mutant dogs revealed mild outer nuclear layer loss in the treated eye compared to moderate loss in the corresponding retinal regions of the untreated control eye. However, persistent Müller glial stress response along with photoreceptor synapse loss were evident in both treated and untreated eyes. Photoreceptor synaptic remodeling, infrequent in treated regions, was observed in all untreated advanced-aged retinas, accompanied by a progressive increase in microglial cells indicative of ongoing inflammation. Interestingly, about half of the examined genes showed similar expression levels between treated and untreated advanced-aged mutant retinas, with some reaching normal levels.
    Conclusions: Gene expression data suggest a shift from pro-degenerative mechanisms in middle-aged mutant retinas to more compensatory mechanisms in preserved retinal regions at advanced stages, despite ongoing degeneration. Such shift, potentially attributed to a number of surviving resilient cells, may influence disease patterns and treatment outcomes.
    DOI:  https://doi.org/10.1167/iovs.65.12.18
  13. Int Immunopharmacol. 2024 Oct 06. pii: S1567-5769(24)01739-9. [Epub ahead of print]143(Pt 1): 113217
       BACKGROUND: Ischemic stroke is the leading cause of death and long-term disability worldwide. After stroke, microglia exhibit not only pro-inflammatory phenotype to aggravate the neuroinflammation, but also anti-inflammatory phenotype to play a neuroprotective role. Studies on the spatial and temporal changes in microglia and the underlying mechanisms help to elucidate the inflammatory cascade after stroke. The regulation of microglia polarization provides new insights for the intervention of post-stroke inflammation.
    OBJECTIVE: We aimed to investigate the phenotypic change of microglia in the acute phase of ischemic stroke and the effects of Dl-3-n-butylphthalide (NBP) on microglia. TSPO-PET was used to image microglia and evaluate the efficacy of NBP.
    METHODS: We constructed an MCAO model in rats and administered NBP daily. The infarct volumes in the NBP-treated and control groups were measured. TSPO-PET/CT was used to demonstrate the activation of microglia and the effects of NBP. Additionally, we investigated the effects of NBP on TSPO expression. In vitro, microglia were exposed to glucose oxygen deprivation, and the effects of NBP on microglia and TSPO expression were verified.
    RESULTS: NBP improved neurological severity scores and reduced infarct volume in the acute phase of ischemic stroke. NBP facilitated microglia to adopt the anti-inflammatory phenotype and reduce the pro-inflammatory phenotype. NBP decreased the expressions of inflammatory cytokines. TSPO-PET/CT observed increase in uptake in the infarct lesion, and this uptake was reduced in response to NBP. NBP reduced TSPO expression in microglia after stroke. In vitro experiments further verified that NBP facilitated the transition of microglia towards the anti-inflammatory phenotype, and inhibited inflammatory cytokine secretion and TSPO expression.
    CONCLUSION: We illustrated that NBP fosters the shift of microglia towards the anti-inflammatory phenotype while diminishing their inclination towards the pro-inflammatory phenotype, thereby exerting neuroprotective effects. NBP reduces TSPO expression in microglia, which can be observed by TSPO-PET/CT imaging.
    Keywords:  Dl-3-n-butylphthalide; Ischemic stroke; Microglia; TSPO-PET/CT
    DOI:  https://doi.org/10.1016/j.intimp.2024.113217
  14. CNS Neurosci Ther. 2024 Oct;30(10): e70061
       BACKGROUND: Inflammatory and immune responses in the brain that contribute to various neuropsychiatric disorders may begin as microglial "priming". Interferon (IFN)-γ is known to cause microglial priming, but the mechanism is unclear.
    METHODS: We examined the effects of IFN-γ on gene expression, microglial activation, inflammatory and immune responses and activity of the NLRP3 inflammasome in primary microglia and in the brains of mice.
    RESULTS: Our results showed that treating microglial cultures with IFN-γ induced a hedgehog-like morphology and upregulated markers of microglial activation (CD86, CD11b) and pro-inflammatory molecules (IL-1β, IL-6, TNF-α, iNOS), while downregulating markers of microglial homeostasis (CX3CR1, CD200R1), anti-inflammatory molecules (MCR1, Arg-1) and neurotrophic factors (IGF-1, BDNF). IFN-γ also upregulated markers of NLRP3 inflammasome activation (NLRP3, caspase-1, gasdermin D, IL-18). This particular transcriptional profiling makes IFN-γ-primed microglia with exaggerated responses upon lipopolysaccharide (LPS) stimulation. The level of NLRP3, caspase-1, gasdermin D, IL-1β, IL-18, TNF-α and iNOS in microglia cultures treated with both IFN-γ and LPS were highest than with either one alone. Injecting IFN-γ into the lateral ventricle of mice induced similar morphological and functional changes in hippocampal microglia as in primary microglial cultures. The effects of IFN-γ on NLRP3 inflammasome and microglia from cultures or hippocampus were abolished when STAT1 was inhibited using fludarabin. Injecting mice with IFN-γ alone or together with LPS induced anxiety- and depression-like behaviors and impaired hippocampus-dependent spatial memory; these effects were mitigated by fludarabin.
    CONCLUSIONS: IFN-γ primes microglia by activating STAT1, which upregulates genes that activate the NLRP3 inflammasome. Inhibiting the IFN-γ/STAT1 axis may be a way to treat neurodegenerative diseases and psychiatric disorders that involve microglial priming.
    Keywords:  NLRP3 inflammasome; STAT1; interferon‐gamma; lipopolysaccharide; microglial priming
    DOI:  https://doi.org/10.1111/cns.70061
  15. Biomol Ther (Seoul). 2024 Oct 11.
      A previously reported study highlighted the neuroprotective potential of the novel benzylideneacetophenone derivative, JC3, in mice. In pursuit of compounds with even more robust neuroprotective and anti-inflammatory properties compared to JC3, we synthesized substituted 1,3-diphenyl-2-propen-1-ones based on chalcones. Molecular modeling studies aimed at discerning the chemical structural features conducive to heightened biological activity revealed that JCII-8,10,11 exhibited the widest HOMOLUMO gap within this category, indicating facile electron and radical transfer between HOMO and LUMO in model assessments. From the pool of synthesized compounds, JCII-8,10,11 were selected for the present investigation. The biological assays involving JCII-8,10,11 demonstrated their concentration-dependent suppression of iNOS and COX-2 protein levels, alongside various cytokine mRNA expressions in LPS-induced murine microglial BV2 cells. Furthermore, western blot analyses were conducted to investigate the MAPK pathways and NF-κB/p65 nuclear translocation. These evaluations conclusively confirmed the inflammatory inhibition effects in both in vitro and in vivo inflammation models. These findings establish JCII-8,10,11 as potent anti-inflammatory agents, hindering inflammatory mediators and impeding NF-κB/p65 nuclear translocation via JNK and ERK MAPK phosphorylation in BV2 cells. The study positions them as potential therapeutics for inflammation-related conditions. Additionally, JCII-11 exhibited greater activity compared to other tested JCII compounds.
    Keywords:  Anti-inflammatory; Benzylideneacetophenone; COX; MAPK; TNF-α
    DOI:  https://doi.org/10.4062/biomolther.2024.049
  16. ACS Chem Neurosci. 2024 Oct 11.
      Microglia, the innate immune cell of the brain, are a principal player in Alzheimer's disease (AD) pathogenesis. Their surveillance of the brain leads to interaction with the protein aggregates that drive AD pathogenesis, most notably Amyloid Beta (Aβ). Microglia attempt to clear and degrade Aβ using phagocytic machinery, spurring damaging neuroinflammation in the process. Thus, modulation of the microglial response to Aβ is crucial in mitigating AD pathophysiology. SCFAs, microbial byproducts of dietary fiber fermentation, are blood-brain barrier permeable molecules that have recently been shown to modulate microglial function. It is unclear whether propionate, one representative SCFA, has beneficial or detrimental effects on microglia in AD. Thus, we investigated its impact on microglial Aβ response in vitro. Using a multiomics approach, we characterized the transcriptomic, metabolomic, and lipidomic responses of immortalized murine microglia following 1 h of Aβ stimulation, as well as characterizing Aβ phagocytosis and secretion of reactive nitrogen species. Propionate blunted the early inflammatory response driven by Aβ, downregulating the expression of many Aβ-stimulated immune genes, including those regulating inflammation, the immune complement system, and chemotaxis. Further, it reduced the expression of Apoe and inflammation-promoting Aβ-binding scavenger receptors such as Cd36 and Msr1 in favor of inflammation-dampening Lpl, although this led to impaired phagocytosis. Finally, propionate shifted microglial metabolism, altering phospholipid composition and diverting arginine metabolism, resulting in decreased nitric oxide production. Altogether, our data demonstrate a modulatory role of propionate on microglia that may dampen immune activation in response to Aβ, although at the expense of phagocytic capacity.
    Keywords:  Alzheimer’s disease; amyloid beta; microglia; propionate; short chain fatty acids
    DOI:  https://doi.org/10.1021/acschemneuro.4c00370
  17. Mamm Genome. 2024 Oct 10.
      Alzheimer's Disease (AD) remains a significant challenge due to its complex etiology and socio-economic burden. In this study, we investigated the roles of macrophage polarization-related hub genes in AD pathology, focusing on their impact on immune infiltration and gene regulation in distinct brain regions. Using Gene Expression Omnibus (GEO) datasets GSE110226 (choroid plexus) and GSE1297 (hippocampal CA1), we identified key genes-EDN1, HHLA2, KL, TREM2, and WWTR1-associated with AD mechanisms and immune responses. Based on these findings, we developed a diagnostic model demonstrating favorable calibration and clinical applicability. Furthermore, we explored molecular interactions within mRNA-transcription factor and mRNA-miRNA regulatory networks, providing deeper insights into AD progression and identifying potential therapeutic targets. The novel identification of WWTR1 and HHLA2 as biomarkers expands the diagnostic toolkit for AD, offering new perspectives on the disease's underlying immune dynamics. However, external dataset validation and further in vitro and in vivo studies are required to confirm these results and their clinical relevance.
    Keywords:  Alzheimer’s disease; Gene regulatory networks; Hub genes; Immune infiltration; Macrophage polarization
    DOI:  https://doi.org/10.1007/s00335-024-10073-0
  18. Immunol Med. 2024 Oct 11. 1-9
      Glioblastoma (GBM) is the central nervous system tumor with the most aggressive behavior, and no definitive therapy has yet been found. The tumor microenvironment of GBM is immunosuppressive and is considered a 'cold tumor' with low lymphocytic infiltration, but is characterized by a high proportion of glioma-associated macrophages/microglia (GAMs). GAMs promote tumor growth and also affect treatment resistance in GBM. In this review, we describe the origin and classification of GAMs in humans and describe the mechanisms of their activation and the cell-cell interactions between tumor cells and GAMs. We also describe the history of GAM detection methods, especially immunohistochemistry, and discusses the merits and limitations of these techniques. In addition, we summarized chemotactic factors for GAMs and the therapies targeting these factors. Recent single-cell RNA analysis and spatial analysis add new insights to our previous knowledge of GAMs. Based on these studies, GBM therapies targeting GAMs are expected to be further developed.
    Keywords:  Tumor-associated macrophage (TAM); brain tumor; glioblastoma; microglia
    DOI:  https://doi.org/10.1080/25785826.2024.2411035
  19. Heliyon. 2024 Oct 15. 10(19): e37589
      The clinical prevention, diagnosis, treatment, and drug development of Alzheimer's disease (AD) require urgent detection of novel targets and methods. Autophagy and microglia are significantly associated with the pathogenesis of early AD. This study indicated that microRNA-375-3p can inhibit autophagy by promoting mTOR phosphorylation in normal physiological conditions, while microRNA-375-3p promoted autophagy and enhanced neural repair by inhibiting the expression of presenilin 1 in early AD pathogenesis. Furthermore, co-treatment of rapamycin, and microRNA-375-3p can synergistically promote the autophagy and microglial activation in a neuroprotective manner, clear Aβ accumulation, repair nerve damage, and alleviate cognitive dysfunction and memory defects in APP/PS1 TG mice. This research revealed the impact and mechanism of miR375-3p on the early stage of AD through in vivo and in vitro experiments and provides new ideas and directions for the early treatment of AD.
    Keywords:  Alzheimer's disease; Autophagy; Microglia activation; microRNA-375-3p
    DOI:  https://doi.org/10.1016/j.heliyon.2024.e37589
  20. Invest Ophthalmol Vis Sci. 2024 Oct 01. 65(12): 19
       Purpose: Microglia-like cells derived from stem cells (iMG) provide a plentiful cell source for studying the functions of microglia in both normal and pathological conditions. Our goal is to establish a simplified and effective method for generating iMG in a precisely defined system. Additionally, we aim to achieve functional maturation of iMG through coculture with retinal organoids.
    Methods: In this study, iMG were produced under precisely defined conditions. They were subjected to LPS and poly IC stimulation. Additionally, we examined distinct phenotypic and functional variances between iMG and HMC3, a commonly used human microglia cell line. To investigate how the retinal cell interaction enhances microglial properties, iMG were cocultured with retinal organoids, producing CC-iMG. We performed RNA sequencing, electrophysiological analysis, and transmission electron microscope (TEM) to examine the maturation of CC-iMG compared to iMG.
    Results: Our results demonstrated that iMG performed immune-responsive profiles closely resembling those of primary human microglia. Compared to HMC3, iMG expressed a higher level of typical microglial markers and exhibited enhanced phagocytic activity. The transcriptomic analysis uncovered notable alterations in the ion channel profile of CC-iMG compared to iMG. Electrophysiological examination demonstrated a heightened intensity of inward- and outward-rectifying K+ currents in CC-iMG. Furthermore, CC-iMG displayed elevated numbers of lysosomes and mitochondria, coupled with increased phagocytic activity.
    Conclusions: These findings contribute to advancing our understanding of human microglial biology, specifically in characterizing and elucidating the functions of CC-iMG, thereby offering an in vitro microglial model for future scientific research and potential clinical applications in cell therapy.
    DOI:  https://doi.org/10.1167/iovs.65.12.19
  21. bioRxiv. 2024 Sep 23. pii: 2024.09.21.614247. [Epub ahead of print]
      Traumatic brain injury (TBI) is a global health challenge, responsible for 30% of injury-related deaths and significantly contributing to disability. Annually, over 50 million TBIs occur worldwide, with most adult patients at emergency departments showing alcohol in their system. TBI is also a known risk factor for alcohol abuse, yet its interaction with alcohol consumption remains poorly understood. In this study, we demonstrate that the fluid percussion injury (FPI) model of TBI in mice significantly increases alcohol consumption and impairs cognitive function. At cellular levels, FPI markedly reduced the number and activity of striatal cholinergic interneurons (CINs) while increasing microglial cells. Notably, depleting microglial cells provided neuroprotection, mitigating cholinergic loss and enhancing cholinergic activity. These findings suggest that TBI may promote alcohol consumption and impair cognitive abilities through microglia activation and consequently reduced cholinergic function. Our research provides critical insights into the mechanisms linking TBI with increased alcohol use and cognitive deficits, potentially guiding future therapeutic strategies.
    DOI:  https://doi.org/10.1101/2024.09.21.614247
  22. bioRxiv. 2024 Sep 26. pii: 2024.09.25.614526. [Epub ahead of print]
      Despite the emerging consensus that microglia are critical to physiological and pathological brain function, it is unclear how microglial roles and their underlying mechanisms differ between brain regions. Microglia throughout the brain express common markers, such as the purinergic receptor P2Y12, that delineate them from peripheral macrophages. P2Y12 is a critical sensor of injury but also contributes to the sensing of neuronal activity and remodeling of synapses, with microglial loss of P2Y12 resulting in behavioral deficits. P2Y12 has largely been studied in cortical microglia, despite the fact that a growing body of evidence suggests that microglia exhibit a high degree of regional specialization. Cerebellar microglia, in particular, exhibit transcriptional, epigenetic, and functional profiles that set them apart from their better studied cortical and hippocampal counterparts. Here, we demonstrate that P2Y12 deficiency does not alter the morphology, distribution, or dynamics of microglia in the cerebellum. In fact, loss of P2Y12 does little to disturb the distinct transcriptomic profiles of cortical and cerebellar microglia. However, unlike in cortex, P2Y12 is not required for a full microglial response to focal injury, suggesting that cerebellar and cortical microglia use different cues to respond to injury. Finally, we show that P2Y12 deficiency impairs cerebellar learning in a delay eyeblink conditioning task, a common test of cerebellar plasticity and circuit function. Our findings suggest not only region-specific roles of microglial P2Y12 signaling in the focal injury response, but also indicate a conserved role for P2Y12 in microglial modulation of plasticity across regions.
    DOI:  https://doi.org/10.1101/2024.09.25.614526
  23. bioRxiv. 2024 Sep 15. pii: 2024.09.13.612948. [Epub ahead of print]
      In EAE, a mouse model of multiple sclerosis, immunization with MOG autoantigen results in the generation of Th1/Th17 T cells in the periphery. MOG-specific T cells then invade into the central nervous system (CNS), resulting in neuronal demyelination. Microglia, innate immune cells in the CNS are known to regulate various neuronal diseases. However, the role of microglia in EAE has remained elusive. BRD4 is a BET protein expressed in microglia, whether BRD4 in microglia contributes to EAE has not been determined. We show that EAE pathology was markedly reduced with microglia-specific Brd4 conditional knockout (cKO). In these mice, microglia- T cell interactions were greatly reduced, leading to the lack of T cell reactivation. Microglia specific transcriptome data showed downregulation of genes required for interaction with and reactivation of T cells in Brd4 cKO samples. In summary, BRD4 plays a critical role in regulating microglia function in normal and EAE CNS.
    Summary: This study demonstrates that in a EAE model, microglia-specific Brd4 conditional knockout mice were defective in expressing genes required for microglia- T cells interaction and those involved in neuroinflammation, and demyelination resulting in fewer CNS T cell invasion and display marked reduction in EAE pathology.
    DOI:  https://doi.org/10.1101/2024.09.13.612948
  24. bioRxiv. 2024 Sep 24. pii: 2024.09.24.614765. [Epub ahead of print]
      Obesity and type 2 diabetes are well-established risk factors for neurodegenerative disorders 1-4 , yet the underlying mechanisms remain poorly understood. The adipocyte-brain axis is crucial for brain function, as adipocytes secrete signaling molecules, including lipids and adipokines, that impinge on neural circuits to regulate feeding and energy expenditure 5 . Disruptions in the adipocyte-brain axis are associated with neurodegenerative conditions 6 , but the causal links are not fully understood. Neural debris accumulates with age and injury, and glial phagocytic function is crucial for clearing this debris and maintaining a healthy brain microenvironment 7-9 . Using adult Drosophila, we investigate how adipocyte metabolism influences glial phagocytic activity in the brain. We demonstrate that a prolonged obesogenic diet increases adipocyte fatty acid oxidation and ketogenesis. Genetic manipulations that mimic obesogenic diet-induced changes in adipocyte lipid and mitochondrial metabolism unexpectedly reduce the expression of the phagocytic receptor Draper in Drosophila microglia-like cells in the brain. We identify Apolpp -the Drosophila equivalent of human apolipoprotein B (ApoB)-as a critical adipocyte-derived signal that regulates glial phagocytosis. Additionally, we show that Lipoprotein Receptor 1 (LpR1), the LDL receptor on phagocytic glia, is required for glial capacity to clear injury-induced neuronal debris. Our findings establish that adipocyte-brain lipoprotein signaling regulates glial phagocytic function, revealing a novel pathway that links adipocyte metabolic disorders with neurodegeneration.
    Highlights: Prolonged exposure to an obesogenic diet result in a starvation-like metabolic response in adipose tissue.Obesogenic diet-induced mitochondrial lipid catabolism in adipose tissue impacts glial phagocytic function.Adipocyte ApoB is a novel regulator of glial phagocytic function.LpR1, on ensheathing glia, is required for glial response to axonal injury.
    Graphical abstract:
    DOI:  https://doi.org/10.1101/2024.09.24.614765
  25. bioRxiv. 2024 Sep 27. pii: 2024.09.25.614546. [Epub ahead of print]
      Microglia are critical innate immune cells of the brain. In vivo targeting of microglia using gene-delivery systems is crucial for studying brain physiology and developing gene therapies for neurodegenerative diseases and other brain disorders such as NeuroAIDS. Historically, microglia have been extremely resistant to transduction by viral vectors, including adeno-associated virus (AAV) vectors. Recently, there has been some progress demonstrating the feasibility and potential of using AAV to transduce microglia after direct intraparenchymal vector injection. Data suggests that combining specific AAV capsids with microglia-specific gene expression cassettes to reduce neuron off-targeting will be key. However, no groups have developed AAV capsids for microglia transduction after intracerebroventricular (ICV) injection. The ICV route of administration has advantages such as increased brain biodistribution while avoiding issues related to systemic injection. Here, we performed an in vivo selection using an AAV peptide display library that enables recovery of capsids that mediate transgene expression in microglia. Using this approach, we identified a capsid, MC5, which mediated enhanced transduction of microglia after ICV injection compared to AAV9. Furthermore, MC5 enhanced both the efficiency (85%) and specificity (93%) of transduction compared to a recently described evolved AAV9 capsid for microglia targeting after direct injection into the brain parenchyma. Exploration of the use of MC5 in a mouse models of Alzheimer's disease revealed transduced microglia surrounding and within plaques. Overall, our results demonstrate that the MC5 capsid is a useful gene transfer tool to target microglia in vivo by direct and ICV routes of administration.
    DOI:  https://doi.org/10.1101/2024.09.25.614546
  26. Alzheimers Dement. 2024 Oct 11.
       INTRODUCTION: Microglial responses are an integral part of Alzheimer's disease (AD) pathology and are associated with amyloid beta (Aβ) deposition. This study aimed to investigate the effects of Aβ and microglial responses on global cognitive impairment.
    METHODS: In this longitudinal study, 28 patients with mild cognitive impairment and 11 healthy controls underwent 11C-PK11195 and 11C-Pittsburgh compound B positron emission tomography (PET), structural magnetic resonance imaging scans, and global cognitive ratings at baseline and 2-year follow-up. Correlations between PET uptake and global cognition were assessed. Additionally, the mediation effect of the microglial response on the association between Aβ load and global cognition was assessed.
    RESULTS: Aβ load and the microglial response were both independently detrimental to global cognitive performance at baseline; however, at 2-year follow-up the association between Aβ load and global cognitive ratings was partially mediated by the microglial response.
    DISCUSSION: As AD progresses, the associated microglial response partially mediates the detrimental effect of aggregated Aβ on cognition.
    HIGHLIGHTS: This was a longitudinal study of amyloid beta (Aβ), microglial responses, and global cognitive performance. Aβ and microglial responses both affect cognition in early Alzheimer's disease. Microglial response partially mediates the effect of Aβ on cognition in later stages.
    Keywords:  Alzheimer's disease; PK11195; amyloid beta; cognition; mild cognitive impairment; position emission tomography; translocator protein
    DOI:  https://doi.org/10.1002/alz.14298
  27. J Neuroinflammation. 2024 Oct 10. 21(1): 259
      Melanin concentrating hormone (MCH) controls many brain functions, such as sleep/wake cycle and memory, and modulates the inflammation response. Previous studies have shown that influenza A virus (IAV) infection-induced neuroinflammation leads to central nervous damage. This study investigated the potential effects of MCH against neuroinflammation induced by IAV infection and its mechanism. MCH (1 and 2 mg/ml) was administrated for 5 consecutive days before IAV infection. Pentobarbital-induced sleep tests, an open-field test, and a Morris water maze were performed to measure sleep quality, spatial learning and memory ability. Neuronal loss and microglial activation were observed with Nissl staining and immunofluorescence assay. The levels of inflammatory cytokines and the expression of the JNK/ERK signaling pathway were examined by ELISA and western blot. IAV infection led to poor sleep quality, impaired the ability of spatial learning and memory, caused neuronal loss and microglial activation in mice's hippocampus and cortex. Meanwhile the level of inflammatory cytokines increased, and the JNK/ERK signaling pathway was activated after IAV infection. MCH administration significantly alleviated IAV-induced neuroinflammation, cognitive impairment, and sleep disorder, decreased the levels of inflammatory cytokines, and inhibited neuronal loss and microglial activation in the hippocampus and cortex by regulating the JNK/ERK signaling pathway. Therefore, MCH alleviated the neuroinflammation, spatial learning and memory impairment, and sleep disorder in IAV-infected mice by regulating the JNK/ERK signaling pathway.
    Keywords:  Cognitive; Influenza A virus; Melanin-concentrating hormone; Microglia; Neuroinflammation; Sleep
    DOI:  https://doi.org/10.1186/s12974-024-03251-z
  28. bioRxiv. 2024 Jun 24. pii: 2024.06.20.597748. [Epub ahead of print]
      The role of central nervous system (CNS) glia in sustaining self-autonomous inflammation and driving clinical progression in multiple sclerosis (MS) is gaining scientific interest. We applied a single transcription factor ( SOX10 )-based protocol to accelerate oligodendrocyte differentiation from hiPSC-derived neural precursor cells, generating self-organizing forebrain organoids. These organoids include neurons, astrocytes, oligodendroglia, and hiPSC-derived microglia to achieve immunocompetence. Over 8 weeks, organoids reproducibly generated mature CNS cell types, exhibiting single-cell transcriptional profiles similar to the adult human brain. Exposed to inflamed cerebrospinal fluid (CSF) from MS patients, organoids properly mimic macroglia-microglia neuro-degenerative phenotypes and intercellular communication seen in chronic active MS. Oligodendrocyte vulnerability emerged by day 6 post-MS-CSF exposure, with nearly 50% reduction. Temporally-resolved organoid data support and expand on the role of soluble CSF mediators in sustaining downstream events leading to oligodendrocyte death and inflammatory neurodegeneration. Such findings support implementing this organoid model for drug screening to halt inflammatory neurodegeneration.
    DOI:  https://doi.org/10.1101/2024.06.20.597748
  29. Neuropharmacology. 2024 Oct 04. pii: S0028-3908(24)00343-5. [Epub ahead of print] 110174
      Alcohol use disorder (AUD) has a complicated pathophysiology. Binge ethanol intoxication may produce long-lasting changes throughout extended amygdala neurocircuitry including neuroinflammation, often leading to relapse. Therefore, understanding the role of binge drinking induced neuroinflammation on extended amygdala neurocircuitry is critically important for treatment. We sought to understand the role of neuroinflammation in a naturalized form of rodent binge ethanol drinking (Drinking in the Dark (DID)). In a 5-week DID paradigm, we demonstrate that acute intraperitoneal (IP) injection of the anti-inflammatory drug minocycline significantly reduced binge drinking repeatedly in male and female Cx3CR1-GFP and C57BL/6J mice. Importantly, IP administration transiently decreased intermittent access sucrose consumption, was not observed on the second IP injection, but did not significantly alter food or water consumption, suggesting that minocycline may produce initial acute aversive effects and may not alter long-term consumption of natural rewards. Examination of rodent behaviors post ethanol binge drinking reveals no lasting effects of minocycline treatment on locomotion or anxiety-like behavior. To assess neuroinflammation, we developed a novel analysis method using a Matlab image analysis script, which allows for non-biased skeletonization and evaluation of microglia morphology to determine a possible activation state in Cx3CR1-GFP knock-in mice after repeated DID. We observed significant morphological changes of microglia within the CeA, but no differences in the BLA. Taken together, this study demonstrates repeated binge ethanol consumption can produce significant levels of microglia morphology changes within the CeA, and that immunomodulatory therapies may be an intriguing pharmacological candidate for the treatment of AUD.
    Keywords:  binge ethanol drinking; central amygdala; microglia; minocycline; neuroinflammation
    DOI:  https://doi.org/10.1016/j.neuropharm.2024.110174
  30. bioRxiv. 2024 Sep 26. pii: 2024.09.24.614814. [Epub ahead of print]
      Mapping enhancers and target genes in disease-related cell types has provided critical insights into the functional mechanisms of genetic variants identified by genomewide association studies (GWAS). However, most existing analyses rely on bulk data or cultured cell lines, which may fail to identify cell-type-specific enhancers and target genes. Recently, single-cell multimodal data measuring both gene expression and chromatin accessibility within the same cells have enabled the inference of enhancer-gene pairs in a cell-type-specific and context-specific manner. However, this task is challenged by the data's high sparsity, sequencing depth variation, and the computational burden of analyzing a large number of enhancer-gene pairs. To address these challenges, we propose scMultiMap, a statistical method that infers enhancer-gene association from sparse multimodal counts using a joint latent-variable model. It adjusts for technical confounding, permits fast moment-based estimation and provides analytically derived p -values. In systematic analyses of blood and brain data, scMultiMap shows appropriate type I error control, high statistical power with greater reproducibility across independent datasets and stronger consistency with orthogonal data modalities. Meanwhile, its computational cost is less than 1% of existing methods. When applied to single-cell multimodal data from postmortem brain samples from Alzheimer's disease (AD) patients and controls, scMultiMap gave the highest heritability enrichment in microglia and revealed new insights into the regulatory mechanisms of AD GWAS variants in microglia.
    DOI:  https://doi.org/10.1101/2024.09.24.614814
  31. ACS Nano. 2024 Oct 05.
      Sepsis-associated encephalopathy (SAE) is a devastating complication of sepsis, affecting approximately 70% of patients with sepsis in intensive care units (ICU). Although the pathophysiological mechanisms remain elusive, sepsis is typically accompanied by systemic inflammatory response syndrome (SIRS) and hyper-oxidative conditions. Here, we introduce a biomimetic nanomodulator (mAOI NP) that specifically targets inflammation site and simultaneously regulates oxidative and inflammatory stresses. mAOI NPs are constructed using metal-coordinated polyphenolic antioxidants (tannic acid) and flavonoid quercetin, which are then coated with macrophage membrane to enhance pharmacokinetics and enable SAE targeting. In a cecal ligation and puncture (CLP)-induced severe sepsis model, mAOI NPs effectively mitigate oxidative stress by purging reactive oxygen species, repairing mitochondrial damage and activating the Nrf2/HO-1 signaling pathway; while polarizing M1 macrophages or microglia toward anti-inflammatory M2 subtype. mAOI NPs potently inhibit sepsis progress, prolong overall survival from 25 to 66% and enhance learning and memory capabilities in SAE mice. Further proteomics analysis reveals that mAOI NPs modulate neurodevelopment processes related to learning and memory formation while also exerting anti-inflammatory and antioxidative effects on brain tissue responses associated with SAE pathology. This study offers significant potential for improving patient outcomes and revolutionizing the treatment landscape for this devastating complication of sepsis.
    Keywords:  anti-inflammation; antioxidation; biomimetic nanomedicine; macrophage polarization; sepsis-associated encephalopathy
    DOI:  https://doi.org/10.1021/acsnano.4c08157