Cureus. 2022 Sep;14(9): e29583
The greatest global root of irremediable amaurosis in the venerable is age-related macular degeneration (AMD), a complex eye condition. Clinically, AMD is characterized as being in an early stage to late stage and initially affects the macula, which is the center of the retina (advanced AMD). Age-related cellular and metabolic imbalance are made worse by the creation of excessive amounts of free radical species, which causes mitochondrial malfunction. As a result, in AMD-affected eyes, the deprivation of melanocytes, confection, and eventually atrophy within the retinal tissue are caused by the continued proliferation of oxidative stress caused by systemic antioxidant capacity depletion. In the urbanized, industrialized world, age-related macular degeneration (AMD) is one of the major causes of central vision loss in the older age group. Although several causes and mechanisms for the dysfunction and degeneration of the retinal pigment epithelium (RPE) have previously been identified, the condition's symptoms are still not fully understood. Etiopathogenesis is still not entirely understood. As a result, the RPE fails, allowing an accumulation of aberrant misfolded proteins, due to the loss of anatomical control over oppression, altered homeostasis, dysfunctional lipid homeostasis, and failure of mitochondria. Due to the multitude of interconnected processes, numerous complicated therapy combinations will probably be the best option to deliver the best visual outcomes; these combinations will vary depending on the kind and degree of the condition being treated. Undoubtedly, this will lead to the development of customized preventative medications and, hopefully, the revelation of a potential cure. All the mechanisms involved in the etiology of AMD should be continuously probed to create covariates for other contemporaneous or future problems.
Keywords: age-related macular degeneration; homeostasis; neuroinflammation; oxidative stress; proteostasis; retinal pigment epithelium (rpe)