bims-mideyd Biomed News
on Mitochondrial dysfunction in eye diseases
Issue of 2023–12–31
three papers selected by
Rajalekshmy “Raji” Shyam, Indiana University Bloomington



  1. Sci Rep. 2023 12 27. 13(1): 22981
      To investigate whether aldosterone (ALD) and hydrocortisone (HC) change the gene expression of SLC7A5, which encodes the large neutral amino acid transporter small subunit 1 (LAT1), and the transport activity of LAT1 in the retinal pigment epithelium (RPE) in vitro. ARPE-19 cells were grown to confluence. After withdrawing the serum, ALD or HC was added with several doses and incubated, and SLC7A5 gene expression was measured. The influx and efflux transport of sodium fluorescein (Na-F) were evaluated using the Transwell culture system. SLC7A5 gene expression was upregulated by ALD and downregulated by HC in a dose-dependent manner. Both ALD and HC significantly increased the influx and efflux Na-F transport of RPE cells at a dose that did not change the expression of SLC7A5. JPH203, a specific inhibitor of LAT1, significantly reduced accelerated Na-F transport. Both ALD and HC increased the gene expression of zonula occludin-1 (ZO-1) although they did not change the immunoreactivity of ZO-1 in RPE cells. LAT1 may play an important role in increasing Na-F transport associated with ALD and HC administration. A specific LAT1 inhibitor may effectively regulate the increased material transport of RPE induced by ALD and HC.
    DOI:  https://doi.org/10.1038/s41598-023-50196-z
  2. J Extracell Vesicles. 2024 Jan;13(1): e12401
      Retinal degeneration (RD), a group of diseases leading to irreversible vision loss, is characterised by retinal pigment epithelium (RPE) or retinal neuron damage and loss. With fewer risks of immune rejection and tumorigenesis, stem cell-secreted extracellular vesicles (EVs) offer a new cell-free therapeutic paradigm for RD, which remains to be investigated. Human retinal organoid-derived retinal progenitor cells (hERO-RPCs) are an easily accessible and advanced cell source for RD treatment. However, hERO-RPCs-derived EVs require further characterisation. Here, we compared the characteristics of EVs from hERO-RPCs (hRPC-EVs) with those of human embryonic stem cell (hESC)-derived EVs (hESC-EVs) as controls. Based on in-depth proteomic analysis, we revealed remarkable differences between hRPC-EVs and hESC-EVs. A comparison between EVs and their respective cells of origin demonstrated that the protein loading of hRPC-EVs was more selective than that of hESC-EVs. In particular, hESC-EVs were enriched with proteins related to angiogenesis and cell cycle, whereas hRPC-EVs were enriched with proteins associated with immune modulation and retinal development. More importantly, compared with that of hESC-EVs, hRPC-EVs exhibited a lower correlation with cell proliferation and a unique capacity to regulate lipid metabolism. It was further confirmed that hRPC-EVs potentially eliminated lipid deposits, inhibited lipotoxicity and oxidative stress, and enhanced phagocytosis and survival of oleic acid-treated ARPE-19 cells. Mechanistically, hRPC-EVs are integrated into the mitochondrial network of oleic acid-treated ARPE-19 cells, and increased the level of mitochondrial fatty acid β-oxidation-related proteins. Thus, organoid-derived hRPC-EVs represent a promising source of cell-free therapy for RD, especially for blinding diseases related to abnormal lipid metabolism in RPE cells.
    Keywords:  extracellular vesicles; lipid metabolism; retinal organoids; retinal pigment epithelium cells; retinal progenitor cells
    DOI:  https://doi.org/10.1002/jev2.12401
  3. Geroscience. 2023 Dec 28.
      Age-related macular degeneration (AMD) is the leading cause of irreversible vision damage among elderly individuals. There is still no efficient treatment for dry AMD. Retinal pigment epithelial (RPE) degeneration has been confirmed to play an important role in dry AMD. Recent studies have reported that ferroptosis caused by iron overload and lipid peroxidation may be the primary causes of RPE degeneration. However, the upstream regulatory molecules of RPE ferroptosis remain largely unknown. Pigment epithelium-derived factor (PEDF) is an important endogenic protective factor for the RPE. Our results showed that in the murine dry AMD model induced by sodium iodate (SI), PEDF expression was downregulated. Moreover, dry AMD-like pathology was observed in PEDF-knockout mice. Therefore, the aim of this study was to reveal the effects and mechanism of PEDF on RPE ferroptosis and investigate potential therapeutic targets for dry AMD. The results of lipid peroxidation and transmission electron microscope showed that retinal ferroptosis was significantly activated in SI-treated mice and PEDF-knockout mice. Restoration of PEDF expression ameliorated SI-induced retinal dysfunction in mice, as assessed by electroretinography and optical coherence tomography. Mechanistically, western blotting and immunofluorescence analysis demonstrated that the overexpression of PEDF could upregulate the expression of glutathione peroxidase 4 (GPX4) and ferritin heavy chain-1 (FTH1), which proved to inhibit lipid peroxidation and RPE ferroptosis induced by SI. This study revealed the novel role of PEDF in ferroptosis inhibition and indicated that PEDF might be a potential therapeutic target for dry AMD.
    Keywords:  Age-related macular degeneration; Ferroptosis; Pigment epithelial-derived factor; Retinal pigment epithelium
    DOI:  https://doi.org/10.1007/s11357-023-01038-3