bims-mideyd Biomed News
on Mitochondrial dysfunction in eye diseases
Issue of 2024–03–17
three papers selected by
Rajalekshmy “Raji” Shyam, Indiana University Bloomington



  1. Acta Ophthalmol. 2024 Mar;102 Suppl 282 3-53
      Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase β. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1β in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.
    Keywords:  ageing; inflammasomes; inflammation; macular degeneration; mitochondria; mitophagy; oxidative stress; protein aggregation; retinal pigment epithelium
    DOI:  https://doi.org/10.1111/aos.16661
  2. bioRxiv. 2024 Mar 01. pii: 2024.02.28.582405. [Epub ahead of print]
       Purpose: Metabolic defects in retinal pigment epithelium (RPE) are underlying many retinal degenerative diseases. This study aims to identify the nutrient requirements of healthy and diseased human RPE cells.
    Methods: We profiled the utilization of 183 nutrients in human RPE cells: 1) differentiated and dedifferentiated fetal RPE (fRPE), 2) induced pluripotent stem cell derived-RPE (iPSC RPE), 3) Sorsby fundus dystrophy (SFD) patient-derived iPSC RPE and its CRISPR-corrected isogenic SFD (cSFD) iPSC RPE, and 5) ARPE-19 cell lines cultured under different conditions.
    Results: Differentiated fRPE cells and healthy iPSC RPE cells can utilize 51 and 48 nutrients respectively, including sugars, intermediates from glycolysis and tricarboxylic acid (TCA) cycle, fatty acids, ketone bodies, amino acids, and dipeptides. However, when fRPE cells lose epithelial phenotype through dedifferentiated, they can only utilize 17 nutrients, primarily sugar and glutamine-related amino acids. SFD RPE cells can utilize 37 nutrients; however, Compared to cSFD RPE and healthy iPSC RPE, they are unable to utilize lactate, some TCA cycle intermediates, and short-chain fatty acids. Nonetheless, they show increased utilization of branch-chain amino acids (BCAAs) and BCAA-containing dipeptides. The dedifferentiated ARPE-19 cells in traditional culture media cannot utilize lactate and ketone bodies. In contrast, nicotinamide supplementation promotes differentiation into epithelial phenotype, restoring the ability to use these nutrients.
    Conclusions: Epithelial phenotype confers metabolic flexibility to the RPE for utilizing various nutrients. SFD RPE cells have reduced metabolic flexibility, relying on the oxidation of BCAAs. Our findings highlight the importance of nutrient availability and utilization in RPE differentiation and diseases.
    DOI:  https://doi.org/10.1101/2024.02.28.582405
  3. Inflammation. 2024 Mar 09.
      The cornea serves as a vital protective barrier for the eye; however, it is prone to injury and damage that can disrupt corneal epithelium and nerves, triggering inflammation. Therefore, understanding the biological effects and molecular mechanisms involved in corneal wound healing and identifying drugs targeting these pathways is crucial for researchers in this field. This study aimed to investigate the therapeutic potential of progranulin (PGRN) in treating corneal injuries. Our findings demonstrated that PGRN significantly enhanced corneal wound repair by accelerating corneal re-epithelialization and re-innervation. In vitro experiments with cultured epithelial cells and trigeminal ganglion cells further revealed that PGRN stimulated corneal epithelial cell proliferation and promoted axon growth in trigeminal ganglion cells. Through RNA-sequencing (RNA-seq) analysis and other experimental techniques, we discovered that PGRN exerted its healing effects modulating Wnt signaling pathway, which played a critical role in repairing epithelial cells and promoting axon regeneration in trigeminal neurons. Importantly, our study highlighted the anti-inflammatory properties of PGRN by inhibiting the NF-κB signaling pathway, leading to decreased infiltration of macrophages. In conclusion, our findings underscored the potential of PGRN in facilitating corneal wound healing by promoting corneal epithelial cell proliferation, trigeminal ganglion cell axon regeneration, and suppressing ocular inflammation. These results suggest that PGRN could potentially expedite the healing process and improve visual outcomes in patients with corneal injuries.
    Keywords:  cornea; corneal epithelial cells; progranulin (PGRN); trigeminal ganglion cells; wound healing
    DOI:  https://doi.org/10.1007/s10753-024-01999-3