bims-mideyd Biomed News
on Mitochondrial dysfunction in eye diseases
Issue of 2024‒05‒26
four papers selected by
Rajalekshmy “Raji” Shyam, Indiana University Bloomington



  1. Antioxidants (Basel). 2024 Apr 27. pii: 538. [Epub ahead of print]13(5):
      Previous studies showed that NaIO3 can induce oxidative stress-mediated retinal pigment epithelium (RPE) damage to simulate age-related macular degeneration (AMD). Lemon peel is rich in antioxidants and components that can penetrate the blood-retinal barrier, but their role in retinal oxidative damage remains unexplored. Here, we explore the protection of lemon peel ultrasonic-assisted water extract (LUWE), containing large amounts of flavonoids and polyphenols, against NaIO3-induced retinal degeneration. We initially demonstrated that LUWE, orally administered, prevented retinal distortion and thinning on the inner and outer nuclei layers, downregulating cleaved caspase-3 protein expression in RPE cells in NaIO3-induced mice. The effect of LUWE was achieved through the suppression of apoptosis and the associated proteins, such as cleaved PARP and cleaved caspase-3, as suggested by NaIO3-induced ARPE-19 cell models. This is because LUWE reduced reactive oxygen species-mediated mitochondrial fission via regulating p-Drp-1 and Fis1 expression. We further confirmed that LUWE suppresses the expression of p-MEK-1/2 and p-ERK-1/2 in NaIO3-induced ARPE-19 cells, thereby providing the protection described above, which was confirmed using PD98059 and U0126. These results indicated that LUWE prevents mitochondrial oxidative stress-mediated RPE damage via the MEK/ERK pathway. Elucidation of the molecular mechanism may provide a new protective strategy against retinal degeneration.
    Keywords:  apoptosis; lemon peel ultrasonic-assisted water extract (LUWE); reactive oxygen species (ROS); retinal degeneration; sodium iodate (NaIO3)
    DOI:  https://doi.org/10.3390/antiox13050538
  2. J Vis Exp. 2024 May 03.
      The retinal pigment epithelium (RPE) is a crucial monolayer in the outer retina responsible for supporting photoreceptors. RPE degeneration commonly occurs in diseases marked by progressive vision loss, such as age-related macular degeneration (AMD). Research on AMD often relies on human donor eyes or induced pluripotent stem cells (iPSCs) to represent the RPE. However, these RPE sources require extended differentiation periods and substantial expertise for culturing. Additionally, some research institutions, particularly those in rural areas, lack easy access to donor eyes. While a commercially available immortalized RPE cell line (ARPE-19) exists, it lacks essential in vivo RPE features and is not widely accepted in many ophthalmology research publications. There is a pressing need to obtain representative primary RPE cells from a more readily available and cost-effective source. This protocol elucidates the isolation and subculture of primary RPE cells obtained post-mortem from porcine eyes, which can be sourced locally from commercial or academic suppliers. This protocol necessitates common materials typically found in tissue culture labs. The result is a primary, differentiated, and cost-effective alternative to iPSCs, human donor eyes, and ARPE-19 cells.
    DOI:  https://doi.org/10.3791/66079
  3. Food Sci Anim Resour. 2024 May;44(3): 699-709
      Oxya chinensis sinuosa (OC) is a well-known edible insect. Several researches on the health benefits of OC consumption have been performed to date; however, their effect on eye health remains largely unknown. This study aimed to assess the protective effects of OC extracts on the oxidative stress on the retinal pigment epithelium (RPE) cells. Oxidative damage has been identified as one of the key regulatory factors in age-related macular degeneration. H2O2-induced reactive oxygen species (ROS) production, a well-known oxidative stress factor, can cause cell death in retinal pigment epithelia cells. In this study, we found that three OC extracts effectively prevented H2O2-induced ROS production and subsequent death of ARPE-19 cells in a dose-dependent manner. In addition, the OC extracts inhibited the phosphorylation of mitogen-activated protein kinases including p38, JNK, and ERK. The OC extracts restored IκBα degradation induced by H2O2, indicating that OC extracts suppressed the activation of nuclear factor-κB. Furthermore, the three OC extracts were shown to have antioxidant effects by up-regulating the intracellular expression of key antioxidant proteins such as SOD, NQO, and HO-1. Here we demonstrated the antioxidant and anti-apoptotic effects of the OC extracts on ARPE-19, indicating their potential role in improving eye health. These results suggest that three OC extracts plays a critical role in oxidative stress-induced cell death protects in ARPE-19 cells.
    Keywords:  Oxya chinensis sinuosa; age-related macular degeneration; antioxidant; edible insect; eye health functional food
    DOI:  https://doi.org/10.5851/kosfa.2024.e15
  4. Heliyon. 2024 May 15. 10(9): e30786
      Objective: Oxidative stress-induced retinal neurodegenerative changes are among the pathological alterations observed in diabetic retinopathy. Resveratrol (RSV), a polyphenolic compound with diverse pharmacological effects, has shown preventive qualities in several neurodegenerative illnesses, including anti-inflammatory, anti-aging, and antioxidant benefits. However, its therapeutic efficacy in diabetic retinal neurodegeneration has not yet been thoroughly elucidated. Our study aimed to explore the protective mechanisms and therapeutic benefits of RSV on diabetic retinal neurodegeneration alterations.Materials and methods: Using streptozotocin, we created a diabetic mouse model and conducted visual electrophysiological examinations on mice from the normal group, diabetic group, and diabetic group treated with RSV. Retinas were harvested for histological staining. Additionally, primary retinal ganglion cells cultured in high glucose conditions were used to assess malondialdehyde (MDA) levels and superoxide dismutase (SOD) levels upon siRNA-mediated nuclear factor erythroid 2-related factor 2 (Nrf2) interference. Protein levels of Nrf-2, heme oxygenase-1 (HO-1), and transcriptional levels of them were also measured.
    Results: We demonstrated that RSV significantly improved the retinal morphology and function in the diabetic retinopathy model mice. The treated mice exhibited notable improvements in visual electrophysiology, with a significant reduction in retinal ganglion cell apoptosis. Following RSV treatment, the high glucose-cultured ganglion cells demonstrated a considerable rise in SOD levels and a substantial drop in MOD. Moreover, the protein expression of solute carrier family 7 member 11 (SLC7A11) and Nrf2 significantly increased. RT-PCR and Western blot results indicated a significant attenuation of RSV's therapeutic effects upon Nrf2 inhibition.
    Conclusion: Our findings suggest that RSV may reduce oxidative stress levels in the retina and inhibit retinal ganglion cell apoptosis via reducing the Nrf2/HO-1 pathway, which lessens the harm that excessive glucose causes to the retina.
    Keywords:  Apotosis; Diabetic retinopathy; Nrf2/HO-1 pathway; Oxidative stress; Resveratrol; Retinal ganglion cells
    DOI:  https://doi.org/10.1016/j.heliyon.2024.e30786