bims-midneu Biomed News
on Mitochondrial dysfunction in neurodegeneration
Issue of 2021‒06‒13
seventeen papers selected by
Radha Desai
Merck Sharp & Dohme Corp.


  1. Proc Natl Acad Sci U S A. 2021 Jun 15. pii: e2025053118. [Epub ahead of print]118(24):
      TANK-binding kinase 1 (TBK1) is a multifunctional kinase with an essential role in mitophagy, the selective clearance of damaged mitochondria. More than 90 distinct mutations in TBK1 are linked to amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia, including missense mutations that disrupt the abilities of TBK1 to dimerize, associate with the mitophagy receptor optineurin (OPTN), autoactivate, or catalyze phosphorylation. We investigated how ALS-associated mutations in TBK1 affect Parkin-dependent mitophagy using imaging to dissect the molecular mechanisms involved in clearing damaged mitochondria. Some mutations cause severe dysregulation of the pathway, while others induce limited disruption. Mutations that abolish either TBK1 dimerization or kinase activity were insufficient to fully inhibit mitophagy, while mutations that reduced both dimerization and kinase activity were more disruptive. Ultimately, both TBK1 recruitment and OPTN phosphorylation at S177 are necessary for engulfment of damaged mitochondra by autophagosomal membranes. Surprisingly, we find that ULK1 activity contributes to the phosphorylation of OPTN in the presence of either wild-type or kinase-inactive TBK1. In primary neurons, TBK1 mutants induce mitochondrial stress under basal conditions; network stress is exacerbated with further mitochondrial insult. Our study further refines the model for TBK1 function in mitophagy, demonstrating that some ALS-linked mutations likely contribute to disease pathogenesis by inducing mitochondrial stress or inhibiting mitophagic flux. Other TBK1 mutations exhibited much less impact on mitophagy in our assays, suggesting that cell-type-specific effects, cumulative damage, or alternative TBK1-dependent pathways such as innate immunity and inflammation also factor into the development of ALS in affected individuals.
    Keywords:  OPTN; Parkin; TBK1; mitophagy; neurodegeneration
    DOI:  https://doi.org/10.1073/pnas.2025053118
  2. Neuropharmacology. 2021 Jun 02. pii: S0028-3908(21)00181-7. [Epub ahead of print] 108627
      Mitochondrial dysfunction manifests as an early event in the substantia nigra (SN) in aging and Parkinson disease. Cyclooxygenase 2 (COX-2), the rate-limiting enzyme in the prostaglandin E2 (PGE2) synthesis pathway, is implicated in aging and age-related neurodegenerative diseases; moreover, inhibition of COX-2 expression has been shown to be neuroprotective for nigrostriatal dopaminergic neurons. However, it is not known whether the neuroprotective effect of COX-2 inhibition is related to improved mitochondrial function during the aging process. To this end, we explored the effects of the selective COX-2 inhibitor parecoxib on mitochondrial function in the SN of aged rats. We found that parecoxib administration to aged rats for 10 weeks decreased COX-2/PGE2 expression, increased tyrosine hydroxylase and dopamine transporter expression in nigrostriatal dopaminergic neurons, and alleviated motor behavioral decline. Decreased malondialdehyde levels and an increased GSH/GSSG ratio as well as enhanced enzymatic activities of catalase and manganese superoxide dismutase in parecoxib-treated aged rats indicate that parecoxib administration elevated antioxidative ability in the SN during the aging process. Parecoxib treatment to aged rats promoted mitochondrial biogenesis by upregulating PGC-1α/NRF-1/TFAM, enhancing mitochondrial fusion by decreasing Drp1 levels and increasing Mfn1 and OPA1 levels, and activated mitophagy by increasing PINK1/Parkin levels while reducing p62/SQSTM1 levels, thereby coordinating mitochondrial homeostasis via inhibiting the COX-2/PGE2 pathway. Thus, our results strongly support the conclusion that parecoxib treatment is conducive to improving mitochondrial dysfunction in the SN upon aging in rats.
    Keywords:  Aged rats; Cyclooxygenase 2; Mitochondria; Parecoxib; Substantia nigra
    DOI:  https://doi.org/10.1016/j.neuropharm.2021.108627
  3. ASN Neuro. 2021 Jan-Dec;13:13 17590914211012888
      Mitochondrial dysfunction is a key mechanism of cell death in hypoxic-ischemic brain injury. Neuronal pentraxin 1 (NP1) has been shown to play crucial roles in mitochondria-mediated neuronal death. However, the underlying mechanism(s) of NP1-induced mitochondrial dysfunction in hypoxia-ischemia (HI) remains obscure. Here, we report that NP1 induction following HI and its subsequent localization to mitochondria, leads to disruption of key regulatory proteins for mitochondrial biogenesis. Brain mitochondrial DNA (mtDNA) content and mtDNA-encoded subunit I of complex IV (mtCOX-1) expression was increased post-HI, but not the nuclear DNA-encoded subunit of complex II (nSDH-A). Up-regulation of mitochondrial proteins COXIV and HSP60 further supported enhanced mtDNA function. NP1 interaction with active Bax (Bax6A7) was increased in the brain after HI and in oxygen-glucose deprivation (OGD)-induced neuronal cultures. Importantly, NP1 colocalized with mitochondrial hexokinase II (mtHKII) following OGD leading to HKII dissociation from mitochondria. Knockdown of NP1 or SB216763, a GSK-3 inhibitor, prevented OGD-induced mtHKII dissociation and cellular ATP decrease. NP1 also modulated the expression of mitochondrial transcription factor A (Tfam) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), regulators of mitochondrial biogenesis, following HI. Together, we reveal crucial roles of NP1 in mitochondrial biogenesis involving interactions with Bax[6A7] and mtHKII in HI brain injury.
    Keywords:  hexokinase II; hypoxia-ischemia; mitochondrial transcription factor A; neonatal brain injury; neuronal pentraxin 1; peroxisome proliferator-activated receptor γ coactivator-1α
    DOI:  https://doi.org/10.1177/17590914211012888
  4. Proc Natl Acad Sci U S A. 2021 Jun 15. pii: e2020078118. [Epub ahead of print]118(24):
      Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease characterized by myelin damage followed by axonal and ultimately neuronal loss. The etiology and physiopathology of MS are still elusive, and no fully effective therapy is yet available. We investigated the role in MS of autophagy (physiologically, a controlled intracellular pathway regulating the degradation of cellular components) and of mitophagy (a specific form of autophagy that removes dysfunctional mitochondria). We found that the levels of autophagy and mitophagy markers are significantly increased in the biofluids of MS patients during the active phase of the disease, indicating activation of these processes. In keeping with this idea, in vitro and in vivo MS models (induced by proinflammatory cytokines, lysolecithin, and cuprizone) are associated with strongly impaired mitochondrial activity, inducing a lactic acid metabolism and prompting an increase in the autophagic flux and in mitophagy. Multiple structurally and mechanistically unrelated inhibitors of autophagy improved myelin production and normalized axonal myelination, and two such inhibitors, the widely used antipsychotic drugs haloperidol and clozapine, also significantly improved cuprizone-induced motor impairment. These data suggest that autophagy has a causal role in MS; its inhibition strongly attenuates behavioral signs in an experimental model of the disease. Therefore, haloperidol and clozapine may represent additional therapeutic tools against MS.
    Keywords:  antipsychotic drugs; autophagy; mitochondria; multiple sclerosis; remyelination
    DOI:  https://doi.org/10.1073/pnas.2020078118
  5. PLoS Comput Biol. 2021 Jun 09. 17(6): e1009073
      Neurons rely on localized mitochondria to fulfill spatially heterogeneous metabolic demands. Mitochondrial aging occurs on timescales shorter than the neuronal lifespan, necessitating transport of fresh material from the soma. Maintaining an optimal distribution of healthy mitochondria requires an interplay between a stationary pool localized to sites of high metabolic demand and a motile pool capable of delivering new material. Interchange between these pools can occur via transient fusion / fission events or by halting and restarting entire mitochondria. Our quantitative model of neuronal mitostasis identifies key parameters that govern steady-state mitochondrial health at discrete locations. Very infrequent exchange between stationary and motile pools optimizes this system. Exchange via transient fusion allows for robust maintenance, which can be further improved by selective recycling through mitophagy. These results provide a framework for quantifying how perturbations in organelle transport and interactions affect mitochondrial homeostasis in neurons, a key aspect underlying many neurodegenerative disorders.
    DOI:  https://doi.org/10.1371/journal.pcbi.1009073
  6. J Cell Sci. 2021 Jun 09. pii: jcs.258399. [Epub ahead of print]
      Mitochondrial super-complexes form around a conserved core of monomeric complex I and dimeric complex III; wherein subunit NDUFA11, of the former, is conspicuously situated at the interface. We identified B0491.5 (NDUF-11) as the C. elegans homologue, of which animals homozygous for a CRISPR-Cas9 generated knockout allele arrested at the L2 development stage. Reducing (but not eliminating) expression by RNAi allowed development to adulthood, enabling characterisation of the consequences: destabilisation of complex I and its super-complexes, and perturbation of respiratory function. The loss of NADH-dehydrogenase activity is compensated by enhanced complex II activity, with the potential for detrimental ROS-production. Electron cryo-tomography highlight aberrant cristae morphology and inter-membrane-space widening and cristae-junctions. The requirement of NDUF-11 for balanced respiration, mitochondrial morphology and development presumably arises due to its involvement in complex I/ super-complex maintenance. This highlights the importance of respiratory complex integrity for health and the potential of its perturbation for mitochondrial disease.
    Keywords:  Caenorhabditis elegans; Electron-transfer chain; Mitochondria; Mitochondrial ultrastructure; electron cryo-tomography; NDUF-11; Respirasome; Respiration; Super-complexes; Worm
    DOI:  https://doi.org/10.1242/jcs.258399
  7. Biochim Biophys Acta Biomembr. 2021 Jun 02. pii: S0005-2736(21)00113-9. [Epub ahead of print] 183663
      Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a polyglutamine (polyQ) tract near the N-terminus of the huntingtin (htt) protein. Expanded polyQ tracts are prone to aggregate into oligomers and insoluble fibrils. Mutant htt (mhtt) localizes to variety of organelles, including mitochondria. Specifically, mitochondrial defects, morphological alteration, and dysfunction are observed in HD. Mitochondrial lipids, cardiolipin (CL) in particular, are essential in mitochondria function and have the potential to directly interact with htt, altering its aggregation. Here, the impact of mitochondrial membranes on htt aggregation was investigated using a combination of mitochondrial membrane mimics and tissue-derived mitochondrial-enriched fractions. The impact of exposure of outer and inner mitochondrial membrane mimics (OMM and IMM respectively) to mhtt was explored. OMM and IMM reduced mhtt fibrillization, with IMM having a larger effect. The role of CL in mhtt aggregation was investigated using a simple PC system with varying molar ratios of CL. Lower molar ratios of CL (<5%) promoted fibrillization; however, increased CL content retarded fibrillization. As revealed by in situ AFM, mhtt aggregation and associated membrane morphological changes at the surface of OMM mimics was markedly different compared to IMM mimics. While globular deposits of mhtt with few fibrillar aggregates were observed on OMM, plateau-like domains were observed on IMM. A similar impact on htt aggregation was observed with exposure to purified mitochondrial-enriched fractions. Collectively, these observations suggest mitochondrial membranes heavily influence htt aggregation with implication for HD.
    Keywords:  Amyloid fibrils; Cardiolipin; Huntington's disease; Mitochondria; Oligomers; Polyglutamine
    DOI:  https://doi.org/10.1016/j.bbamem.2021.183663
  8. Aging Dis. 2021 Jun;12(3): 852-867
      Alzheimer's disease (AD) is the most common cause of dementia in elderly that serves to be a formidable socio-economic and healthcare challenge in the 21st century. Mitochondrial dysfunction and impairment of mitochondrial-specific autophagy, namely mitophagy, have emerged as important components of the cellular processes contributing to the development of AD pathologies, namely amyloid-β plaques (Aβ) and neurofibrillary tangles (NFT). Here, we highlight the recent advances in the association between impaired mitophagy and AD, as well as delineate the potential underlying mechanisms. Furthermore, we conduct a systematic review the current status of mitophagy modulators and analyzed their relevant mechanisms, evaluating on their advantages, limitations and current applications in clinical trials for AD patients. Finally, we describe how deep learning may be a promising method to rapid and efficient discovery of mitophagy inducers as well as general guidance for the workflow of the process.
    Keywords:  Alzheimer’s disease; deep learning; mitophagy; mitophagy inducers; systematic review
    DOI:  https://doi.org/10.14336/AD.2020.0913
  9. PLoS One. 2021 ;16(6): e0252325
      Multiple mutations have been described in the human GBA1 gene, which encodes the lysosomal enzyme beta-glucocerebrosidase (GCase) that degrades glucosylceramide and is pivotal in glycosphingolipid substrate metabolism. Depletion of GCase, typically by homozygous mutations in GBA1, is linked to the lysosomal storage disorder Gaucher's disease (GD) and distinct or heterozygous mutations in GBA1 are associated with increased Parkinson's disease (PD) risk. While numerous genes have been linked to heritable PD, GBA1 mutations in aggregate are the single greatest risk factor for development of idiopathic PD. The importance of GCase in PD necessitates preclinical models in which to study GCase-related mechanisms and novel therapeutic approaches, as well as to elucidate the molecular mechanisms leading to enhanced PD risk in GBA1 mutation carriers. The aim of this study was to develop and characterize a novel GBA1 mouse model and to facilitate wide accessibility of the model with phenotypic data. Herein we describe the results of molecular, biochemical, histological, and behavioral phenotyping analyses in a GBA1 D409V knock-in (KI) mouse. This mouse model exhibited significantly decreased GCase activity in liver and brain, with substantial increases in glycosphingolipid substrates in the liver. While no changes in the number of dopamine neurons in the substantia nigra were noted, subtle changes in striatal neurotransmitters were observed in GBA1 D409V KI mice. Alpha-synuclein pathology and inflammation were not observed in the nigrostriatal system of this model. In summary, the GBA1 D409V KI mouse model provides an ideal model for studies aimed at pharmacodynamic assessments of potential therapies aiming to restore GCase.
    DOI:  https://doi.org/10.1371/journal.pone.0252325
  10. Sci Rep. 2021 Jun 11. 11(1): 12387
      Metabolic and bioenergetic plasticity of immune cells is essential for optimal responses to bacterial infections. AMPK and Parkin ubiquitin ligase are known to regulate mitochondrial quality control mitophagy that prevents unwanted inflammatory responses. However, it is not known if this evolutionarily conserved mechanism has been coopted by the host immune defense to eradicate bacterial pathogens and influence post-sepsis immunosuppression. Parkin, AMPK levels, and the effects of AMPK activators were investigated in human leukocytes from sepsis survivors as well as wild type and Park2-/- murine macrophages. In vivo, the impact of AMPK and Parkin was determined in mice subjected to polymicrobial intra-abdominal sepsis and secondary lung bacterial infections. Mice were treated with metformin during established immunosuppression. We showed that bacteria and mitochondria share mechanisms of autophagic killing/clearance triggered by sentinel events that involve depolarization of mitochondria and recruitment of Parkin in macrophages. Parkin-deficient mice/macrophages fail to form phagolysosomes and kill bacteria. This impairment of host defense is seen in the context of sepsis-induced immunosuppression with decreased levels of Parkin. AMPK activators, including metformin, stimulate Parkin-independent autophagy and bacterial killing in leukocytes from post-shock patients and in lungs of sepsis-immunosuppressed mice. Our results support a dual role of Parkin and AMPK in the clearance of dysfunctional mitochondria and killing of pathogenic bacteria, and explain the immunosuppressive phenotype associated Parkin and AMPK deficiency. AMPK activation appeared to be a crucial therapeutic target for the macrophage immunosuppressive phenotype and to reduce severity of secondary bacterial lung infections and respiratory failure.
    DOI:  https://doi.org/10.1038/s41598-021-90573-0
  11. Mol Neurobiol. 2021 Jun 10.
      Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 or COVID-19 has been declared as a pandemic disease by the World Health Organization (WHO). Globally, this disease affected 159 million of the population and reported ~ 3.3 million deaths to the current date (May 2021). There is no definitive treatment strategy that has been identified, although this disease has prevailed in its current form for the past 18 months. The main challenges in the (SARS-CoV)-2 infections are in identifying the heterogeneity in viral strains and the plausible mechanisms of viral infection to human tissues. In parallel to the investigations into the patho-mechanism of SARS-CoV-2 infection, understanding the fundamental processes underlying the clinical manifestations of COVID-19 is very crucial for designing effective therapies. Since neurological symptoms are very apparent in COVID-19 infected patients, here, we tried to emphasize the involvement of redox imbalance and subsequent mitochondrial dysfunction in the progression of the COVID-19 infection. It has been articulated that mitochondrial dysfunction is very apparent and also interlinked to neurological symptoms in COVID-19 infection. Overall, this article provides an in-depth overview of redox imbalance and mitochondrial dysfunction involvement in aggravating COVID-19 infection and its probable contribution to the neurological manifestation of the disease.
    Keywords:  Bioenergetic sensors; COVID-19; Mitochondria; Neurological manifestations; Redox imbalance
    DOI:  https://doi.org/10.1007/s12035-021-02412-y
  12. J Alzheimers Dis Rep. 2021 Apr 06. 5(1): 275-282
      Background: The APOE ɛ4 allele is the strongest known genetic risk factor for sporadic Alzheimer's disease (AD). The neighboring TOMM40 gene has also been implicated in AD due to its close proximity to APOE.Objective: Here we tested whether methylation of the TOMM40-APOE locus may influence ApoE protein levels and AD pathology.
    Methods: DNA methylation levels across the TOMM40-APOE locus and ApoE levels were measured in superior frontal gyrus tissues of 62 human brains genotyped for APOE and scored for AD neuropathology.
    Results: Methylation levels within the TOMM40 CpG island in the promoter or APOE CpG island in Exon 4 did not differ between APOE ɛ4 carriers versus non-carriers. However, APOE ɛ4 carriers had significantly higher methylation the APOE promoter compared with non-carriers. Although DNA methylation at TOMM40, APOE promoter region, or APOE did not differ between AD pathological groups, there was a negative association between TOMM40 methylation and CERAD scores. ApoE protein concentrations did not significantly different between APOE ɛ4 carriers and non-carriers, or between AD pathological groups. Finally, there was no correlation between ApoE protein concentrations and DNA methylation levels.
    Conclusion: APOE gene methylation may not be affected by genotype, relate to AD pathology or ApoE protein levels in the superior frontal gyrus, though, DNA methylation at the ApoE promoter differed between genotype. DNA methylation at TOMM40 associated with amyloid-β plaques and longitudinal fluid intelligence. In sum, these results suggest a complicated regulation of the TOMM40-APOE locus in the brain in controlling ApoE protein levels and AD neuropathology.
    Keywords:  APOE; Alzheimer’s disease; DNA methylation; TOMM40; frontal gyrus; neuropathology
    DOI:  https://doi.org/10.3233/ADR-201000
  13. Sci Rep. 2021 Jun 09. 11(1): 12167
      Despite remarkable advances, research into neurodegeneration and Alzheimer Disease (AD) has nonetheless been dominated by inconsistent and conflicting theory. Basic questions regarding how and why the brain changes over time remain unanswered. In this work, we lay novel foundations for a consistent, integrated view of the aging brain. We develop neural economics-the study of the brain's infrastructure, brain capital. Using mathematical modeling, we create ABC (Aging Brain Capital), a simple linear simultaneous-equation model that unites aspects of neuroscience, economics, and thermodynamics to explain the rise and fall of brain capital, and thus function, over the human lifespan. Solving and simulating this model, we show that in each of us, the resource budget constraints of our finite brains cause brain capital to reach an upper limit. The thermodynamics of our working brains cause persistent pathologies to inevitably accumulate. With time, the brain becomes damaged causing brain capital to depreciate and decline. Using derivative models, we suggest that this endogenous aging process underpins the pathogenesis and spectrum of neurodegenerative disease. We develop amyloid-tau interaction theory, a paradigm that bridges the unnecessary conflict between amyloid- and tau-centered hypotheses of AD. Finally, we discuss profound implications for therapeutic strategy and development.
    DOI:  https://doi.org/10.1038/s41598-021-91621-5
  14. EMBO Rep. 2021 Jun 04. 22(6): e51323
      In eukaryotic cells, mitochondria are closely tethered to the endoplasmic reticulum (ER) at sites called mitochondria-associated ER membranes (MAMs). Ca2+ ion and phospholipid transfer occurs at MAMs to support diverse cellular functions. Unlike those in yeast, the protein complexes involved in phospholipid transfer at MAMs in humans have not been identified. Here, we determine the crystal structure of the tetratricopeptide repeat domain of PTPIP51 (PTPIP51_TPR), a mitochondrial protein that interacts with the ER-anchored VAPB protein at MAMs. The structure of PTPIP51_TPR shows an archetypal TPR fold, and an electron density map corresponding to an unidentified lipid-like molecule probably derived from the protein expression host is found in the structure. We reveal functions of PTPIP51 in phospholipid binding/transfer, particularly of phosphatidic acid, in vitro. Depletion of PTPIP51 in cells reduces the mitochondrial cardiolipin level. Additionally, we confirm that the PTPIP51-VAPB interaction is mediated by the FFAT-like motif of PTPIP51 and the MSP domain of VAPB. Our findings suggest that PTPIP51 is a phospholipid transfer protein with a MAM-tethering function.
    Keywords:  MAM; PTPIP51; endoplasmic reticulum; mitochondria; phospholipid
    DOI:  https://doi.org/10.15252/embr.202051323
  15. Epilepsy Behav Rep. 2021 ;16 100455
      Epilepsy in POLG related disease usually involves biallelic recessive mutations causing chronic neuronal loss and neuronal death. However, monoallelic POLG mutations have been reported in patients with neurological features such as seizures [1]. In these patients a second allele/gene was anticipated but not identified. The genetic etiology in epilepsy can contribute to better treatment strategies. For example, valproic acid (VPA) should be avoided in patients with POLG related epilepsy due to possible hepatotoxicity. We report a 12-year old boy with initially drug-resistant focal onset epilepsy, a mild developmental delay and behavioral issues. He carries potential pathogenic variants in the DNA polymerase gamma (POLG) gene (from asymptomatic mother) and in the liprin-alpha-4 (PPFIA4) gene (from asymptomatic father). This latter gene has never been related to (neurological) disorders, although its gene product interacts with several genes that play a role in excitatory neurotransmission and epileptogenesis. Hence, we hypothesize that the phenotype of our patient could be due to combination of detrimental effects to the neurons by the two aforementioned pathogenic variants. Nonetheless, we cannot exclude another undetected POLG mutation. In essence, genetic research should be aware that unexplained neurological disease can be caused by an oligogenic, rather than a monogenic, etiology.
    Keywords:  Case report; Epilepsy; Mitochondria; POLG; PPFIA4
    DOI:  https://doi.org/10.1016/j.ebr.2021.100455
  16. J Cell Sci. 2021 Jun 01. pii: jcs250902. [Epub ahead of print]134(11):
      Goldberg-Shprintzen disease (GOSHS) is a rare microcephaly syndrome accompanied by intellectual disability, dysmorphic facial features, peripheral neuropathy and Hirschsprung disease. It is associated with recessive mutations in the gene encoding kinesin family member 1-binding protein (KIF1BP, also known as KIFBP). The encoded protein regulates axon microtubules dynamics, kinesin attachment and mitochondrial biogenesis, but it is not clear how its loss could lead to microcephaly. We identified KIF1BP in the interactome of citron kinase (CITK, also known as CIT), a protein produced by the primary hereditary microcephaly 17 (MCPH17) gene. KIF1BP and CITK interact under physiological conditions in mitotic cells. Similar to CITK, KIF1BP is enriched at the midbody ring and is required for cytokinesis. The association between KIF1BP and CITK can be influenced by CITK activity, and the two proteins may antagonize each other for their midbody localization. KIF1BP knockdown decreases microtubule stability, increases KIF23 midbody levels and impairs midbody localization of KIF14, as well as of chromosome passenger complex. These data indicate that KIF1BP is a CITK interactor involved in midbody maturation and abscission, and suggest that cytokinesis failure may contribute to the microcephaly phenotype observed in GOSHS.
    Keywords:  AURKB; Abscission; AuroraB; Citron kinase; Cytokinesis; INCENP; KBP; KIAA1279; KIF1BP
    DOI:  https://doi.org/10.1242/jcs.250902
  17. Nat Commun. 2021 06 07. 12(1): 3379
      GATA3 is as a lineage-specific transcription factor that drives the differentiation of CD4+ T helper 2 (Th2) cells, but is also involved in a variety of processes such as immune regulation, proliferation and maintenance in other T cell and non-T cell lineages. Here we show a mechanism utilised by CD4+ T cells to increase mitochondrial mass in response to DNA damage through the actions of GATA3 and AMPK. Activated AMPK increases expression of PPARG coactivator 1 alpha (PPARGC1A or PGC1α protein) at the level of transcription and GATA3 at the level of translation, while DNA damage enhances expression of nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2). PGC1α, GATA3 and NRF2 complex together with the ATR to promote mitochondrial biogenesis. These findings extend the pleotropic interactions of GATA3 and highlight the potential for GATA3-targeted cell manipulation for intervention in CD4+ T cell viability and function after DNA damage.
    DOI:  https://doi.org/10.1038/s41467-021-23715-7