bims-mikwok Biomed News
on Mitochondrial quality control
Issue of 2020‒09‒20
seven papers selected by
Avinash N. Mukkala, University of Toronto



  1. Free Radic Biol Med. 2020 Sep 15. pii: S0891-5849(20)31252-1. [Epub ahead of print]
      Activation of nucleotide-binding domain leucine-rich repeat containing family pyrin domain containing 3 (NLRP3) inflammasome in Kupffer cells (KCs) contributes significantly to hepatic ischemia/reperfusion (I/R) injury, while the mechanism of how NLRP3 inflammasome is regulated remains less well defined. Recent evidence has showed that mitophagy acts as a central player for maintaining mitochondrial homeostatis through elimination of damaged mitochondria, leading to the prevention of hyperinflammation triggered by NLRP3 activation. In this study, we aimed at investigating the potential role of PTEN-induced kinase 1 (PINK1)-mediated mitophagy in hepatic I/R injury. C57BL/6 mice subjected to partial warm hepatic I/R or primary KCs exposed to anoxia/reoxygenation (A/R) was used as in vivo or in vitro model, respectively. Mitophagy was measured by protein levels of PINK1, Parkin, LC3B-II, TOMM20 and p62. NLRP3, caspase-1 and IL-1β at mRNA and/or protein levels were used as indicators of inflammasome activation. Our results demonstrated remarkable hepatic inflammation and NLRP3 inflammasome activation during hepatic I/R, along with increased PINK1-mediated mitophagy. Notably, overexpression of PINK1 in vivo attenuated hepatic I/R injury, ROS production, NLRP3 activation and hepatic inflammation. In parallel, A/R challenge in vitro also triggered NLRP3 activation in KCs accompanied by increase in mitophagy. Enhanced mitophagy mediated by PINK1 overexpression further inhibited NLRP3 activation and reversed the KC-mediated inflammatory injury to hepatocytes. Kinase-dead mutation of PINK1 completely abolished the above protective effects by PINK1. Blocking of mitophagy/autophagy by silencing of PINK1/Parkin, ATG5, NDP52 or OPTN showed the totally opposite effects, respectively. Treatment with different autophagic inhibitors also consistently reversed the PINK1-mediated effects, suggesting that an intact PINK1-mediated mitophagy signaling was crucial for ablation of NLRP3 signaling in the presence of A/R. Together, these results support a critical role of PINK1-mediated mitophagy in mitochondrial quality control for KC activation and function in hepatic I/R.
    Keywords:  NLRP3; PINK1; hepatic ischemia/reperfusion injury; inflammasome; mitophagy
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2020.09.015
  2. J Thorac Cardiovasc Surg. 2020 Aug 10. pii: S0022-5223(20)32362-X. [Epub ahead of print]
      BACKGROUND: Right ventricular hypertrophy and failure are major causes of cardiac morbidity and mortality. A key event in the progression to right ventricular hypertrophy and failure is cardiomyocyte apoptosis due to mitochondrial dysfunction. We sought to determine whether localized intramyocardial injection of autologous mitochondria from healthy muscle treats heart failure.METHODS: Mitochondria transplanted from different sources were initially tested in cultured hypertrophic cardiomyocytes. A right ventricular hypertrophy/right ventricular failure model created through banding of the pulmonary artery in immature piglets was used for treatment with autologous mitochondria (pulmonary artery banded mitochondria injected/treated n = 6) from calf muscle, versus vehicle (pulmonary artery banded vehicle injected/treated n = 6) injected into the right ventricular free-wall, and compared with sham-operated controls (sham, n = 6). Animals were followed for 8 weeks by echocardiography (free-wall thickness, contractility), and dp/dt max was measured concomitantly with cardiomyocyte hypertrophy, fibrosis, and apoptosis at study end point.
    RESULTS: Internalization of mitochondria and adenosine triphosphate levels did not depend on the source of mitochondria. At 4 weeks, banded animals showed right ventricular hypertrophy (sham: 0.28 ± 0.01 cm vs pulmonary artery banding: 0.4 ± 0.02 cm wall thickness; P = .001), which further increased in pulmonary artery banded mitochondria injected/treated but declined in pulmonary artery banded vehicle injected/treated (0.47 ± 0.02 cm vs 0.348 ± 0.03 cm; P = .01). Baseline contractility was not different but was significantly reduced in pulmonary artery banded vehicle injected/treated compared with pulmonary artery banded mitochondria injected/treated and so was dp/dtmax. There was a significant difference in apoptotic cardiomyocyte loss and fibrosis in sham versus hypertrophied hearts with most apoptosis in pulmonary artery banded vehicle injected/treated hearts (sham: 1 ± 0.4 vs calf muscle vs vehicle: 13 ± 1.7; P = .001 and vs pulmonary artery banded mitochondria injected/treated: 8 ± 1.9, P = .01; pulmonary artery banded vehicle injected/treated vs pulmonary artery banded mitochondria injected/treated, P = .05).
    CONCLUSIONS: Mitochondrial transplantation allows for prolonged physiologic adaptation of the pressure-loaded right ventricular and preservation of contractility by reducing apoptotic cardiomyocyte loss.
    Keywords:  autologous mitochondria; right heart failure; transplantation
    DOI:  https://doi.org/10.1016/j.jtcvs.2020.08.011
  3. J Cell Biol. 2020 Nov 02. pii: e202004029. [Epub ahead of print]219(11):
      Mitophagy is an evolutionarily conserved process involving the autophagic targeting and clearance of mitochondria destined for removal. Recent insights into the complex nature of the overlapping pathways regulating mitophagy illustrate mitophagy's essential role in maintaining the health of the mitochondrial network. In this review, we highlight recent studies that have changed the way mitophagy is understood, from initiation through lysosomal degradation. We outline the numerous mitophagic receptors and triggers, with a focus on basal and physiologically relevant cues, offering insight into why they lead to mitochondrial removal. We also explore how mitophagy maintains mitochondrial homeostasis at the organ and system levels and how a loss of mitophagy may play a role in a diverse group of diseases, including cardiovascular, metabolic, and neurodegenerative diseases. With disrupted mitophagy affecting such a wide array of physiological processes, a deeper understanding of how to modulate mitophagy could provide avenues for numerous therapies.
    DOI:  https://doi.org/10.1083/jcb.202004029
  4. J Thorac Cardiovasc Surg. 2020 Aug 12. pii: S0022-5223(20)32372-2. [Epub ahead of print]
      OBJECTIVE: Because mitochondrial dysfunction is a key factor in the progression of pulmonary hypertension, this study tested the hypothesis that transplantation of exogenous viable mitochondria can reverse pulmonary artery remodeling and restore right ventricular performance in pulmonary hypertension.METHODS: Pulmonary hypertension was induced by parenteral injection of monocrotaline (60 mg/kg) and creation of a left-to-right shunt aortocaval fistula in rats. Three weeks after creation of fistula, the animals were randomly assigned to receive intravenous delivery of placebo solution or allogeneic mitochondria once weekly for 3 consecutive weeks. Mitochondria (100 μg) were isolated from the freshly harvested soleus muscles of naïve rats. Transthoracic echocardiography was performed at 3 weeks after mitochondrial delivery.
    RESULTS: Ex vivo heart-lung block images acquired by an IVIS Spectrum (PerkinElmer, Waltham, Mass) imaging system confirmed the enhancement of MitoTracker (Invitrogen, Carlsbad, Calif) fluorescence in the pulmonary arteries. Mitochondria transplantation significantly increased lung tissue adenosine triphosphate concentrations and improved right ventricular performance, as evidenced by a reduction in serum levels of B-type natriuretic peptide and ventricular diameter. Right ventricular mass and wall thickness were restored in the mitochondrial group. In the pulmonary arteries of rats that received mitochondrial treatment, vascular smooth muscle cells expressed higher levels of α-smooth muscle actin and smooth muscle myosin heavy chain II, indicating the maintenance of the nonproliferative, contractile phenotype. The hyper-reactivity of isolated pulmonary arteries to α-adrenergic stimulation was also attenuated after mitochondrial transplantation.
    CONCLUSIONS: Transplantation of viable mitochondria can restore the contractile phenotype and vasoreactivity of the pulmonary artery, thereby reducing the afterload and right ventricular remodeling in rats with established pulmonary hypertension. The improvement in overall right ventricular performance suggests that mitochondrial transplantation can be a revolutionary clinical therapeutic option for the management of pulmonary hypertension.
    Keywords:  mitochondrial dysfunction; mitochondrial glycolysis; vascular smooth muscle phenotypic switching; ventricular remodeling
    DOI:  https://doi.org/10.1016/j.jtcvs.2020.08.014
  5. Cell Calcium. 2020 Sep 05. pii: S0143-4160(20)30128-7. [Epub ahead of print]92 102286
      Sepsis and shock states impose mitochondrial stress, and in response, adaptive mechanisms such as fission, fusion and mitophagy are induced to eliminate damaged portions of or entire dysfunctional mitochondria. The mechanisms underlying these events are being elucidated; yet a direct link between loss of mitochondrial membrane potential ΔΨm and the initiation of fission, fusion and mitophagy remains to be well characterized. The direct association between the magnitude of the ΔΨm and the capacity for mitochondria to buffer Ca2+ renders Ca2+ uniquely suited as the signal engaging these mechanisms in circumstances of mitochondrial stress that lower the ΔΨm. Herein, we show that the calcium/calmodulin-dependent protein kinase (CaMK) IV mediates an adaptive slowing in oxidative respiration that minimizes oxidative stress in the kidneys of mice subjected to either cecal ligation and puncture (CLP) sepsis or endotoxemia. CaMKIV shifts the balance towards mitochondrial fission and away from fusion by 1) directly phosphorylating an activating Serine616 on the fission protein DRP1 and 2) reducing the expression of the fusion proteins Mfn1/2 and OPA-1. CaMKIV, through its function as a direct PINK1 kinase and regulator of Parkin expression, also enables mitophagy. These data support that CaMKIV serves as a keystone linking mitochondrial stress with the adaptive mechanisms of mitochondrial fission, fusion and mitophagy that mitigate oxidative stress in the kidneys of mice responding to sepsis.
    Keywords:  Calcium; Fission; Fusion; Mitochondria; Mitophagy
    DOI:  https://doi.org/10.1016/j.ceca.2020.102286
  6. Cell. 2020 Sep 09. pii: S0092-8674(20)31073-4. [Epub ahead of print]
      Cardiomyocytes are subjected to the intense mechanical stress and metabolic demands of the beating heart. It is unclear whether these cells, which are long-lived and rarely renew, manage to preserve homeostasis on their own. While analyzing macrophages lodged within the healthy myocardium, we discovered that they actively took up material, including mitochondria, derived from cardiomyocytes. Cardiomyocytes ejected dysfunctional mitochondria and other cargo in dedicated membranous particles reminiscent of neural exophers, through a process driven by the cardiomyocyte's autophagy machinery that was enhanced during cardiac stress. Depletion of cardiac macrophages or deficiency in the phagocytic receptor Mertk resulted in defective elimination of mitochondria from the myocardial tissue, activation of the inflammasome, impaired autophagy, accumulation of anomalous mitochondria in cardiomyocytes, metabolic alterations, and ventricular dysfunction. Thus, we identify an immune-parenchymal pair in the murine heart that enables transfer of unfit material to preserve metabolic stability and organ function.
    Keywords:  autophagy; heart; macrophage; mitochondria; phagocytosis; proteostasis
    DOI:  https://doi.org/10.1016/j.cell.2020.08.031
  7. Cell. 2020 Sep 10. pii: S0092-8674(20)31076-X. [Epub ahead of print]
      Metazoan organisms rely on conserved stress response pathways to alleviate adverse conditions and preserve cellular integrity. Stress responses are particularly important in stem cells that provide lifetime support for tissue formation and repair, but how these protective systems are integrated into developmental programs is poorly understood. Here we used myoblast differentiation to identify the E3 ligase CUL2FEM1B and its substrate FNIP1 as core components of the reductive stress response. Reductive stress, as caused by prolonged antioxidant signaling or mitochondrial inactivity, reverts the oxidation of invariant Cys residues in FNIP1 and allows CUL2FEM1B to recognize its target. The ensuing proteasomal degradation of FNIP1 restores mitochondrial activity to preserve redox homeostasis and stem cell integrity. The reductive stress response is therefore built around a ubiquitin-dependent rheostat that tunes mitochondrial activity to redox needs and implicates metabolic control in coordination of stress and developmental signaling.
    Keywords:  FEM1B; FNIP1; KEAP1; mitochondria; oxidative stress; proteasome; reactive oxygen; reductive stress; ubiquitin
    DOI:  https://doi.org/10.1016/j.cell.2020.08.034