bims-mikwok Biomed News
on Mitochondrial quality control
Issue of 2022–05–08
sixteen papers selected by
Avinash N. Mukkala, University of Toronto



  1. Mitochondrion. 2022 Apr 30. pii: S1567-7249(22)00040-X. [Epub ahead of print]
      Mitochondria, known as the powerhouse of the cell, are at the center of healthy physiology and provide cells with energy in the form of ATP. These unique organelles are also implicated in many pathological conditions affecting a variety of organs in various systems. Recently, mitochondrial transplantation, inspired by mitochondria's endosymbiotic origin, has been attempted as a potential biotherapy in mitigating a variety of pathological conditions. Mitochondrial transplantation consists of the process of isolation, transfer, and uptake of exogenous, intact mitochondria into damaged cells. Here, we discuss mitochondrial transplantation in the context of clinical medicine practiced in neurology, cardiology, pulmonary medicine, and oncology, among others. We outline the role of mitochondria in various pathologies and discuss the state-of-the-art research that potentially form the basis of new therapeutics for the treatment of a variety of diseases due to mitochondrial dysfunction. Lastly, we explore some of the challenges associated with mitochondrial transplantation that must be addressed before mitochondrial transplantation becomes a viable therapeutic option in clinical settings.
    Keywords:  Mitochondrial transplantation; clinical medicine; mitochondrial transfer; mitochondrial transplantation in medicine
    DOI:  https://doi.org/10.1016/j.mito.2022.04.006
  2. Nat Rev Cardiol. 2022 May 06.
      Mitochondria are organelles involved in the regulation of various important cellular processes, ranging from ATP generation to immune activation. A healthy mitochondrial network is essential for cardiovascular function and adaptation to pathological stressors. Mitochondria undergo fission or fusion in response to various environmental cues, and these dynamic changes are vital for mitochondrial function and health. In particular, mitochondrial fission is closely coordinated with the cell cycle and is linked to changes in mitochondrial respiration and membrane permeability. Another key function of fission is the segregation of damaged mitochondrial components for degradation by mitochondrial autophagy (mitophagy). Mitochondrial fission is induced by the large GTPase dynamin-related protein 1 (DRP1) and is subject to sophisticated regulation. Activation requires various post-translational modifications of DRP1, actin polymerization and the involvement of other organelles such as the endoplasmic reticulum, Golgi apparatus and lysosomes. A decrease in mitochondrial fusion can also shift the balance towards mitochondrial fission. Although mitochondrial fission is necessary for cellular homeostasis, this process is often aberrantly activated in cardiovascular disease. Indeed, strong evidence exists that abnormal mitochondrial fission directly contributes to disease development. In this Review, we compare the physiological and pathophysiological roles of mitochondrial fission and discuss the therapeutic potential of preventing excessive mitochondrial fission in the heart and vasculature.
    DOI:  https://doi.org/10.1038/s41569-022-00703-y
  3. Front Neurosci. 2022 ;16 800883
      Mitochondrial dysfunction is a hallmark of secondary neuroinflammatory responses and neuronal death in spinal cord injury (SCI). Even though mitochondria-based therapy is an attractive therapeutic option for SCI, the efficacy of transplantation of allogeneic mitochondria in the treatment of SCI remains unclear. Herein, we determined the therapeutic effects of mitochondrial transplantation in the traumatic SCI rats. Compressive SCI was induced by applying an aneurysm clip on the T10 spinal cord of rats. A 100-μg bolus of soleus-derived allogeneic mitochondria labeled with fluorescent tracker was transplanted into the injured spinal cords. The results showed that the transplanted mitochondria were detectable in the injured spinal cord up to 28 days after treatment. The rats which received mitochondrial transplantation exhibited better recovery of locomotor and sensory functions than those who did not. Both the expression of dynamin-related protein 1 and severity of demyelination in the injured cord were reduced in the mitochondrial transplanted groups. Mitochondrial transplantation also alleviated SCI-induced cellular apoptosis and inflammation responses. These findings suggest that transplantation of allogeneic mitochondria at the early stage of SCI reduces mitochondrial fragmentation, neuroapoptosis, neuroinflammation, and generation of oxidative stress, thus leading to improved functional recovery following traumatic SCI.
    Keywords:  allogenic mitochondria; mitochondrial dysfunction; mitochondrial transplantation; oxidative stress; spinal cord injury
    DOI:  https://doi.org/10.3389/fnins.2022.800883
  4. Mitochondrion. 2022 Apr 30. pii: S1567-7249(22)00038-1. [Epub ahead of print]
      Mitochondrial dysfunction plays a vital role in growth and malignancy of tumors. In recent scenarios, mitochondrial transplantation therapy is considered as an effective method to remodel mitochondrial function in mitochondria-related diseases. However, the mechanism by which mitochondrial transplantation blocks tumor cell proliferation is still not determined. In addition, mitochondria are maternal inheritance in evolution, and mitochondria obtained from genders exhibit differences in mitochondrial activity. Therefore, the study indicates the inhibitory effect of mitochondria from different genders on hepatocellular carcinoma and explores the molecular mechanism. The results reveal that the healthy mitochondria can retard the proliferation of the hepatocellular carcinoma cells in vitro and in vivo through arresting cell cycle and inducing apoptosis. The molecular mechanism suggests that mitochondrial transplantation therapy can decrease aerobic glycolysis, and down-regulate the expression of cycle-related proteins while up-regulate apoptosis-related proteins in tumor cells. In addition, the antitumor activity of mitochondria from female mice (F-Mito) is relatively higher than that of mitochondria from male mice (M-Mito), which would be related to the evidence that the F-Mito process higher activity than the M-Mito. This study clarifies the mechanism of exogenous mitochondria inhibiting the proliferation of hepatocellular carcinoma and contributes a new biotechnology for therapy of mitochondria-related diseases from different genders.
    Keywords:  apoptosis; cell cycle arrest; hepatocellular carcinoma; mitochondrial therapy
    DOI:  https://doi.org/10.1016/j.mito.2022.04.004
  5. EMBO J. 2022 May 02. e109460
      PINK1 and parkin constitute a mitochondrial quality control system mutated in Parkinson's disease. PINK1, a kinase, phosphorylates ubiquitin to recruit parkin, an E3 ubiquitin ligase, to mitochondria. PINK1 controls both parkin localization and activity through phosphorylation of both ubiquitin and the ubiquitin-like (Ubl) domain of parkin. Here, we observed that phospho-ubiquitin can bind to two distinct sites on parkin, a high-affinity site on RING1 that controls parkin localization and a low-affinity site on RING0 that releases parkin autoinhibition. Surprisingly, ubiquitin vinyl sulfone assays, ITC, and NMR titrations showed that the RING0 site has higher affinity for phospho-ubiquitin than phosphorylated Ubl in trans. We observed parkin activation by micromolar concentrations of tetra-phospho-ubiquitin chains that mimic mitochondria bearing multiple phosphorylated ubiquitins. A chimeric form of parkin with the Ubl domain replaced by ubiquitin was readily activated by PINK1 phosphorylation. In all cases, mutation of the binding site on RING0 abolished parkin activation. The feedforward mechanism of parkin activation confers robustness and rapidity to the PINK1-parkin pathway and likely represents an intermediate step in its evolutionary development.
    Keywords:  Parkinson's disease; autophagy; mitophagy; open-loop control; ubiquitin
    DOI:  https://doi.org/10.15252/embj.2021109460
  6. Nat Commun. 2022 May 03. 13(1): 2412
      Human neurodegenerative disorders often exhibit similar pathologies, suggesting a shared aetiology. Key pathological features of Parkinson's disease (PD) are also observed in other neurodegenerative diseases. Pantothenate Kinase-Associated Neurodegeneration (PKAN) is caused by mutations in the human PANK2 gene, which catalyzes the initial step of de novo CoA synthesis. Here, we show that fumble (fbl), the human PANK2 homolog in Drosophila, interacts with PINK1 genetically. fbl and PINK1 mutants display similar mitochondrial abnormalities, and overexpression of mitochondrial Fbl rescues PINK1 loss-of-function (LOF) defects. Dietary vitamin B5 derivatives effectively rescue CoA/acetyl-CoA levels and mitochondrial function, reversing the PINK1 deficiency phenotype. Mechanistically, Fbl regulates Ref(2)P (p62/SQSTM1 homolog) by acetylation to promote mitophagy, whereas PINK1 regulates fbl translation by anchoring mRNA molecules to the outer mitochondrial membrane. In conclusion, Fbl (or PANK2) acts downstream of PINK1, regulating CoA/acetyl-CoA metabolism to promote mitophagy, uncovering a potential therapeutic intervention strategy in PD treatment.
    DOI:  https://doi.org/10.1038/s41467-022-30178-x
  7. Cell Biol Toxicol. 2022 May 04.
      Cells can adjust their mitochondrial morphology by altering the balance between mitochondrial fission and fusion to adapt to stressful conditions. The connection between a chemical perturbation, changes in mitochondrial function, and altered mitochondrial morphology is not well understood. Here, we made use of high-throughput high-content confocal microscopy to assess the effects of distinct classes of oxidative phosphorylation (OXPHOS) complex inhibitors on mitochondrial parameters in a concentration and time resolved manner. Mitochondrial morphology phenotypes were clustered based on machine learning algorithms and mitochondrial integrity patterns were mapped. In parallel, changes in mitochondrial membrane potential (MMP), mitochondrial and cellular ATP levels, and viability were microscopically assessed. We found that inhibition of MMP, mitochondrial ATP production, and oxygen consumption rate (OCR) using sublethal concentrations of complex I and III inhibitors did not trigger mitochondrial fragmentation. Instead, complex V inhibitors that suppressed ATP and OCR but increased MMP provoked a more fragmented mitochondrial morphology. In agreement, complex V but not complex I or III inhibitors triggered proteolytic cleavage of the mitochondrial fusion protein, OPA1. The relation between increased MMP and fragmentation did not extend beyond OXPHOS complex inhibitors: increasing MMP by blocking the mPTP pore did not lead to OPA1 cleavage or mitochondrial fragmentation and the OXPHOS uncoupler FCCP was associated with OPA1 cleavage and MMP reduction. Altogether, our findings connect vital mitochondrial functions and phenotypes in a high-throughput high-content confocal microscopy approach that help understanding of chemical-induced toxicity caused by OXPHOS complex perturbing chemicals.
    Keywords:  ATP; Machine learning; Membrane potential; Mitochondria; Morphology
    DOI:  https://doi.org/10.1007/s10565-022-09712-6
  8. Autophagy. 2022 May 06. 1-3
      Accumulating evidence suggests that macroautophagy/autophagy dysfunction plays a critical role in myocardial ischemia-reperfusion (I/R) injury. However, the underlying mechanisms responsible for malfunctional autophagy in cardiomyocytes subjected to I/R are poorly understood. As a result, there are no effective therapeutic options that target autophagy to prevent myocardial I/R injury. We recently revealed that MCOLN1/TRPML1, a lysosomal cationic channel, directly contributes to the inhibition of autophagic flux in cardiomyocytes post I/R. We found that MCOLN1 is activated secondary to reactive oxygen species (ROS) elevation following I/R, which in turn induces the release of lysosomal zinc into the cytosol. This ultimately blocks autophagic flux in cardiomyocytes by disrupting the fusion between autophagosomes containing engulfed mitochondria and lysosomes. Furthermore, we discovered that the MCOLN1-mediated inhibition of autophagy induced by I/R impairs mitochondrial function, which results in further detrimental ROS release that directly contributes to cardiomyocyte death. More importantly, restoration of blocked autophagic flux in cardiomyocytes subjected to I/R achieved by blocking MCOLN1 channels significantly rescues cardiomyocyte death in vitro and greatly improves cardiac function of mice subjected to I/R in vivo. Therefore, targeting MCOLN1 represents a novel therapeutic strategy to protect against myocardial I/R injury.Abbreviations: I/R: ischemia-reperfusion; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCOLN1/TRPML1: mucolipin TRP cation channel 1; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1.
    Keywords:  Autophagy inhibition; MCOLN1; cardiomyocyte death; ischemia-reperfusion injury; mitochondria turnover
    DOI:  https://doi.org/10.1080/15548627.2022.2072657
  9. Chem Biol Interact. 2022 Apr 29. pii: S0009-2797(22)00166-1. [Epub ahead of print] 109961
      Cadmium (Cd) is one of the most toxic metals without biological function, and its accumulation in living organisms has been reported. The kidney is a target organ in Cd toxicity; it has been observed that Cd causes kidney damage even at low concentrations, and Cd damage can quickly progress to chronic kidney disease. The mitochondria play a fundamental role in the nephrotoxicity of Cd; Cd enters the mitochondria and affects the electron transport system (ETS), increases the production of reactive oxygen species (ROS), decreases the mitochondrial membrane potential (Δψm), alters mitochondrial dynamics, induces mutations in mitochondrial deoxyribonucleic acid (mtDNA) and decreased biogenesis leading to increased mitophagy, autophagy, and inevitably apoptosis. Existing therapies to treat Cd nephrotoxicity are currently based on antioxidant and chelating compounds, but despite their promising effects, they have some limitations; therefore, Cd nephrotoxicity continues to represent a global health problem. Mitochondrial transplantation is a new experimental approach with positive results by reversing mitochondrial alterations in cardiac and kidney dysfunction mainly caused by oxidative stress. Hence, the current review discusses the role of mitochondria in Cd-induced toxicity in the kidney and proposes mitochondrial transference as a novel therapy based on transplanting healthy mitochondria to cells with Cd-compromised mitochondria. This review is the first to propose mitochondrial transplantation as a treatment for heavy metal-induced kidney damage.
    Keywords:  Cadmium; Kidney injury; Mitochondrial dysfunction; Mitochondrial transplantation; Oxidative stress
    DOI:  https://doi.org/10.1016/j.cbi.2022.109961
  10. FASEB J. 2022 Jun;36(6): e22342
      Renal fibrosis is the final common outcome of chronic kidney disease (CKD), which remains a huge challenge due to a lack of targeted treatment. Growing evidence suggests that during the process of CKD, the integrity and function of mitochondria in renal tubular epithelial cells (TECs) are generally impaired and strongly connected with the progression of renal fibrosis. Mitophagy, a selective form of autophagy, could remove aberrant mitochondria to maintain mitochondrial homeostasis. Deficiency of mitophagy has been reported to aggravate renal fibrosis. However, whether induction of mitophagy could alleviate renal fibrosis has not been stated. In this study, we explored the effect of mitophagy activation by UMI-77, a compound recently verified to induce mitophagy, on murine CKD model of unilateral ureteral obstruction (UUO) in vivo and TECs in vitro. In UUO mice, we found the changes of mitochondrial damage, ROS production, transforming growth factor (TGF)-β1/Smad pathway activation, as well as epithelial-mesenchymal transition phenotype and renal fibrosis, and these changes were ameliorated by mitophagy enhancement using UMI-77. Moreover, TEC apoptosis, nuclear factor (NF)-κB signaling activation, and interstitial inflammation after UUO were significantly mitigated by augmented mitophagy. Then, we found UMI-77 could effectively and safely induce mitophagy in TECs in vitro, and reduced TGF-β1/Smad signaling and downstream profibrotic responses in TGF-β1-treated TECs. These changes were restored by a mitophagy inhibitor. In conclusion, we demonstrated that mitophagy activation protected against renal fibrosis through improving mitochondrial fitness, downregulating TGF-β1/Smad signaling and alleviating TEC injuries and inflammatory infiltration in kidneys.
    Keywords:  chronic kidney disease; mitochondrial fitness; mitophagy; renal fibrosis
    DOI:  https://doi.org/10.1096/fj.202200199RR
  11. Nucleic Acids Res. 2022 May 07. pii: gkac306. [Epub ahead of print]
      Mitochondria are subcellular organelles present in almost all eukaryotic cells, which play a central role in cellular metabolism. Different tissues, health and age conditions are characterized by a difference in mitochondrial structure and composition. The visual data mining platform mitoXplorer 1.0 was developed to explore the expression dynamics of genes associated with mitochondrial functions that could help explain these differences. It, however, lacked functions aimed at integrating mitochondria in the cellular context and thus identifying regulators that help mitochondria adapt to cellular needs. To fill this gap, we upgraded the mitoXplorer platform to version 2.0 (mitoXplorer 2.0). In this upgrade, we implemented two novel integrative functions, network analysis and transcription factor enrichment, to specifically help identify signalling or transcriptional regulators of mitochondrial processes. In addition, we implemented several other novel functions to allow the platform to go beyond simple data visualization, such as an enrichment function for mitochondrial processes, a function to explore time-series data, the possibility to compare datasets across species and an IDconverter to help facilitate data upload. We demonstrate the usefulness of these functions in three specific use cases. mitoXplorer 2.0 is freely available without login at http://mitoxplorer2.ibdm.univ-mrs.fr.
    DOI:  https://doi.org/10.1093/nar/gkac306
  12. iScience. 2022 May 20. 25(5): 104231
      Insulin signaling promotes anabolic metabolism to regulate cell growth through multi-omic interactions. To obtain a comprehensive view of the cellular responses to insulin, we constructed a trans-omic network of insulin action in Drosophila cells that involves the integration of multi-omic data sets. In this network, 14 transcription factors, including Myc, coordinately upregulate the gene expression of anabolic processes such as nucleotide synthesis, transcription, and translation, consistent with decreases in metabolites such as nucleotide triphosphates and proteinogenic amino acids required for transcription and translation. Next, as cell growth is required for cell proliferation and insulin can stimulate proliferation in a context-dependent manner, we integrated the trans-omic network with results from a CRISPR functional screen for cell proliferation. This analysis validates the role of a Myc-mediated subnetwork that coordinates the activation of genes involved in anabolic processes required for cell growth.
    Keywords:  In silico biology; Omics; Systems biology
    DOI:  https://doi.org/10.1016/j.isci.2022.104231
  13. Mitochondrion. 2022 May 02. pii: S1567-7249(22)00041-1. [Epub ahead of print]
      O-GlcNAcylation, a ubiquitous post-translational modification, rapidly modulates protein activity through the reversible addition and removal of O-GlcNAc groups from serine or threonine residues in target proteins, and is involved in multiple metabolic pathways. With the discovery of enzymes and substrates for O-GlcNAc cycling in mitochondria, mitochondrial O-GlcNAc modification and its regulatory role in mitochondrial function deserve extensive attention. Adaptive regulation of the O-GlcNAc cycling in response to energy perturbations is demonstrated to be important in maintaining mitochondrial homeostasis. Dysregulation of O-GlcNAcylation in mitochondria has been associated with various mitochondrial dysfunctions, such as abnormal mitochondrial dynamics, reduced mitochondrial biosynthesis, disruption of the electron transport chain, oxidative stress and the calcium paradox, as well as activation of mitochondrial apoptosis pathways. Here, we outline the current understanding of O-GlcNAc modification in mitochondria and the key discovery of O-GlcNAcylation in regulating mitochondrial network homeostasis. This review will provide insights into targeting mitochondrial O-GlcNAcylation, as well as the mechanisms linking mitochondrial dysfunction and disease.
    Keywords:  Cellular bioenergetics; Metabolism; Mitochondrial homeostasis; Nutrient sensing; O-GlcNAcylation
    DOI:  https://doi.org/10.1016/j.mito.2022.04.007
  14. Sci Rep. 2022 May 05. 12(1): 7336
      Cells are exposed to oxidative stress and reactive metabolites every day. The Nrf2 signaling pathway responds to oxidative stress by upregulation of antioxidants like glutathione (GSH) to compensate the stress insult and re-establish homeostasis. Although mechanisms describing the interaction between the key pathway constituents Nrf2, Keap1 and p62 are widely reviewed and discussed in literature, quantitative dynamic models bringing together these mechanisms with time-resolved data are limited. Here, we present an ordinary differential equation (ODE) based dynamic model to describe the dynamic response of Nrf2, Keap1, Srxn1 and GSH to oxidative stress caused by the soft-electrophile diethyl maleate (DEM). The time-resolved data obtained by single-cell confocal microscopy of green fluorescent protein (GFP) reporters and qPCR of the Nrf2 pathway components complemented with siRNA knock down experiments, is accurately described by the calibrated mathematical model. We show that the quantitative model can describe the activation of the Nrf2 pathway by compounds with a different mechanism of activation, including drugs which are known for their ability to cause drug induced liver-injury (DILI) i.e., diclofenac (DCF) and omeprazole (OMZ). Finally, we show that our model can reveal differences in the processes leading to altered activation dynamics amongst DILI inducing drugs.
    DOI:  https://doi.org/10.1038/s41598-022-10857-x
  15. Anal Chem. 2022 May 03.
      We demonstrate a fast and easy-to-use three-dimensional printed microfluidic platform for mitochondria isolation from cell and tissue lysates based on inertial microfluidics. We present and quantify the quality of the isolated mitochondria by measuring the respiration rate under various conditions. We demonstrate that the technology produces vital mitochondria of equal quality to traditional, but more burdensome, differential centrifugation. We anticipate that the availability of improved tools for studies of bioenergetics to the broader biological community will enable these and other links to be explored in more meaningful ways, leading to further understanding of the links between energy, health, and disease.
    DOI:  https://doi.org/10.1021/acs.analchem.1c03244
  16. Nat Commun. 2022 May 03. 13(1): 2403
      C. elegans react to metabolic distress caused by mismatches in oxygen and energy status via distinct behavioral responses. At the molecular level, these responses are coordinated by under-characterized, redox-sensitive processes, thought to initiate in mitochondria. Complex I of the electron transport chain is a major site of reactive oxygen species (ROS) production and is canonically associated with oxidative damage following hypoxic exposure. Here, we use a combination of optogenetics and CRISPR/Cas9-mediated genome editing to exert spatiotemporal control over ROS production. We demonstrate a photo-locomotory remodeling of avoidance behavior by local ROS production due to the reversible oxidation of a single thiol on the complex I subunit NDUF-2.1. Reversible thiol oxidation at this site is necessary and sufficient for the behavioral response to hypoxia, does not respond to ROS produced at more distal sites, and protects against lethal hypoxic exposure. Molecular modeling suggests that oxidation at this thiol residue alters the ability for NDUF-2.1 to coordinate electron transfer to coenzyme Q by destabilizing the Q-binding pocket, causing decreased complex I activity. Overall, site-specific ROS production regulates behavioral responses and these findings provide a mechanistic target to suppress the detrimental effects of hypoxia.
    DOI:  https://doi.org/10.1038/s41467-022-30169-y