bims-mikwok Biomed News
on Mitochondrial quality control
Issue of 2022‒07‒31
seven papers selected by
Avinash N. Mukkala, University of Toronto



  1. Autophagy. 2022 Jul 28.
      PINK1-PRKN/Parkin-mediated mitophagy represents an important mitochondrial quality control (MQC) pathway that clears damaged/dysfunctional mitochondria. Although the conjugation of mammalian Atg8-family proteins (mATG8s) to phosphatidylethanolamine (PE) is a defining step in autophagy, its role in mitophagy remains unclear. In our recent study, we found that the mATG8 conjugation system is not required for PINK1-PRKN-mediated mitochondria clearance. Instead, mATG8 conjugation system-independent mitochondria clearance relies on secretory autophagy, in a process we term as the autophagic secretion of mitochondria (ASM). As ASM results in the spurious activation of the CGAS-STING1 pathway, we propose that defects in mATG8 lipidation may promote inflammation through ASM.
    Keywords:  Extracellular vesicles; PINK1-PRKN; inflammation; mATG8 conjugation system; mitochondrial quality control; mitophagy; secretory autophagy
    DOI:  https://doi.org/10.1080/15548627.2022.2107310
  2. Mitochondrion. 2022 Jul 26. pii: S1567-7249(22)00069-1. [Epub ahead of print]
      Although excessive mitochondrial fission is linked to cell activation, its significance in hepatic stellate cells (HSCs) activation and liver fibrosis is unknown. Here we show that excessive mitochondrial fission triggers HSCs activation and liver fibrosis degradation by the epigenetic regulation. We used a combination of in vitro and in vivo models, including HSCs and clinical cases or CCl4-induced liver fibrosis mice, was performed to investigate the regulation and function of mitochondrial fission in HSCs activation and liver fibrosis. Herein, we show that DNMT3A and Drp1 is up regulated in fibrosis livers and mice liver fibrosis tissues, while PGC-1α was decreased. Interestingly, down expression of DNMT3A substantially reduced Drp1 levels, collagen accumulation, and interstitial fibrosis, while significantly increased PGC-1α levels. Furthermore, silencing DNMT3A remarkably inhibits HSCs activation and mitochondrial fission both in vivo and in vitro. Mechanistically, co-immunoprecipitation analysis revealed that DNMT3A bound to pull down the protein of PGC-1α. These findings indicated that epigenetic control of mitochondrial fission enables HSCs activation in liver fibrosis via PGC-1α-Drp1 pathway, and provide new insight into the relationship between mitochondrial fission and liver fibrosis.
    Keywords:  Activation; DNMT3A; Drp1; Hepatic stellate cells; Liver fibrosis; Mitochondrial fission
    DOI:  https://doi.org/10.1016/j.mito.2022.07.005
  3. Nat Commun. 2022 Jul 25. 13(1): 4303
      Mitochondria are highly dynamic organelles whose fragmentation by fission is critical to their functional integrity and cellular homeostasis. Here, we develop a method via optogenetic control of mitochondria-lysosome contacts (MLCs) to induce mitochondrial fission with spatiotemporal accuracy. MLCs can be achieved by blue-light-induced association of mitochondria and lysosomes through various photoactivatable dimerizers. Real-time optogenetic induction of mitochondrial fission is tracked in living cells to measure the fission rate. The optogenetic method partially restores the mitochondrial functions of SLC25A46-/- cells, which display defects in mitochondrial fission and hyperfused mitochondria. The optogenetic MLCs system thus provides a platform for studying mitochondrial fission and treating mitochondrial diseases.
    DOI:  https://doi.org/10.1038/s41467-022-31970-5
  4. Commun Biol. 2022 Jul 25. 5(1): 745
      Extracellular mitochondria are present and act as non-cell-autonomous signals to support energetic homeostasis. While mitochondria allograft is a promising approach in rescuing neurons, glia, and vascular cells in CNS injury and disease, there are profound limitations in cellular uptake of mitochondria together with the efficacy. Here, we modified mitochondria by coating them with cationic DOTAP mixed with DOPE via a modified inverted emulsion method to improve mitochondrial transfer and efficacy. We initially optimized the method using control microbeads and liposomes followed by using mitochondria isolated from intact cerebral cortex of male adult C57BL/6J mice. After the coating process, FACS analysis indicated that approximately 86% of mitochondria were covered by DOTAP/DOPE membrane. Moreover, the artificial membrane-coated mitochondria (AM-mito) shifted the zeta-potential toward positive surface charge, confirming successful coating of isolated mitochondria. Mitochondrial proteins (TOM40, ATP5a, ACADM, HSP60, COX IV) and membrane potentials were well maintained in AM-mito. Importantly, the coating improved mitochondrial internalization and neuroprotection in cultured neurons. Furthermore, intravenous infusion of AM-mito immediately after focal cerebral ischemia-reperfusion amplified cerebroprotection in vivo. Collectively, these findings indicate that mitochondrial surface coating with artificial lipid membrane is feasible and may improve the therapeutic efficacy of mitochondria allograft.
    DOI:  https://doi.org/10.1038/s42003-022-03719-9
  5. Nat Rev Immunol. 2022 Jul 25.
      Numerous mitochondrial constituents and metabolic products can function as damage-associated molecular patterns (DAMPs) and promote inflammation when released into the cytosol or extracellular milieu. Several safeguards are normally in place to prevent mitochondria from eliciting detrimental inflammatory reactions, including the autophagic disposal of permeabilized mitochondria. However, when the homeostatic capacity of such systems is exceeded or when such systems are defective, inflammatory reactions elicited by mitochondria can become pathogenic and contribute to the aetiology of human disorders linked to autoreactivity. In addition, inefficient inflammatory pathways induced by mitochondrial DAMPs can be pathogenic as they enable the establishment or progression of infectious and neoplastic disorders. Here we discuss the molecular mechanisms through which mitochondria control inflammatory responses, the cellular pathways that are in place to control mitochondria-driven inflammation and the pathological consequences of dysregulated inflammatory reactions elicited by mitochondrial DAMPs.
    DOI:  https://doi.org/10.1038/s41577-022-00760-x
  6. J Photochem Photobiol B. 2022 Jul 23. pii: S1011-1344(22)00148-8. [Epub ahead of print]234 112534
      Mitochondrial transplantation (MT) is a new technology developed in recent years, which injects healthy mitochondria directly into damaged tissues or blood vessels to play a therapeutic role. This technology has been studied in many animal models of various diseases including myocardial ischemia, cerebral stroke, liver and lung injury, and even has been successfully used in the treatment of childhood heart disease. MT can quickly improve tissue function within a few minutes after injection. The speed with which MT improves tissue function is frequently questioned, for it is hard to understand how the whole mitochondrion transports to the damaged sites, enters cells and functions within such a short period of time. Are there small molecules of mitochondrial component responsible for the function of MT? To test this hypothesis, we established an ultra-violet (UV)-irradiated HeLa cell model. The results of colony formation, sulforhodamine B (SRB), and Hoechst 33342/PI double staining assay strongly indicated that MT exhibited a significant protective effect against UV irradiation damage. The UV irradiation-induced cell cycle arresting at S phase, apoptosis, mitochondrial membrane potential (MMP) decreasing, and the related apoptosis signaling factors p-IKKα, p-p65, I-κB and the activation of caspase3 were all reversed by MT treatments to some extent. The mechanisms of MT were evaluated through comparing the effect of thermal inactivation, ultrasonic crushing, and repeated freezing and thawing treatments on MT function. These results denied the above hypothesis that mitochondrial component may be responsible for MT, excluded the function of ATP, mtDNA and other small molecules, and indicated that the mitochondria structural integrity is essential. We also evaluated the effect of Ca2+ concentrations (1 and 1.8 mM) on MT, and the results showed no effect was found in this UV-irradiated HeLa cell model. Our data support a potent anti-UV irradiation effect of MT, and that structural integrity of the mitochondria is critical for its function.
    Keywords:  Apoptosis; Cell death; Mitochondrial transplantation; Structural integrity; UV irradiation
    DOI:  https://doi.org/10.1016/j.jphotobiol.2022.112534
  7. Cells. 2022 Jul 17. pii: 2222. [Epub ahead of print]11(14):
      Ischemia reperfusion injury (IRI) is a major obstacle in liver resection and liver transplantation. The initial step of IRI is mediated through ischemia which promotes the production of reactive oxygen species in Kupffer cells. This furthermore promotes the activation of pro-inflammatory signaling cascades, including tumor necrosis factor-alpha, IL-6, interferon, inducible nitric oxide synthase, TLR9/nuclear-factor kappa B pathway, and the production of damage-associated molecular patterns (DAMPs), such as ATP, histone, high mobility group box 1 (HMGB1), urate, mitochondrial formyl peptides and S100 proteins. With ongoing cell death of hepatocytes during the ischemic phase, DAMPs are built up and released into the circulation upon reperfusion. This promotes a cytokines/chemokine storm that attracts neutrophils and other immune cells to the site of tissue injury. The effect of IRI is further aggravated by the release of cytokines and chemokines, such as epithelial neutrophil activating protein (CXCL5), KC (CXCL1) and MIP-2 (CXCL2), the complement proteins C3a and C5a, mitochondrial-derived formyl peptides, leukotriene B4 and neutrophil extracellular traps (NETs) from migrating neutrophils. These NETs can also activate platelets and form Neutrophil-platelet microthrombi to further worsen ischemia in the liver. In this review we aim to summarize the current knowledge of mediators that promote liver IRI, and we will discuss the role of neutrophils and neutrophil extracellular traps in mediating IRI.
    Keywords:  DAMPs; Kupffer cells; NETs; ROS; ischemia-reperfusion injury; miRNA; neutrophils; platelets; thrombosis
    DOI:  https://doi.org/10.3390/cells11142222