bims-mikwok Biomed News
on Mitochondrial quality control
Issue of 2023‒03‒05
three papers selected by
Avinash N. Mukkala, University of Toronto



  1. J Mol Cell Cardiol. 2023 Feb 23. pii: S0022-2828(23)00008-1. [Epub ahead of print]177 28-37
      BACKGROUND: Previous studies have implicated p53-dependent mitochondrial dysfunction in sepsis induced end organ injury, including sepsis-induced myocardial dysfunction (SIMD). However, the mechanisms behind p53 localization to the mitochondria have not been well established. Dynamin-related protein 1 (Drp1), a mediator of mitochondrial fission, may play a role in p53 mitochondrial localization. Here we examined the role of Drp1/p53 interaction in SIMD using in vitro and murine models of sepsis.METHODS: H9c2 cardiomyoblasts and BALB/c mice were exposed to lipopolysaccharide (LPS) to model sepsis phenotype. Pharmacologic inhibitors of Drp1 activation (ψDrp1) and of p53 mitochondrial binding (pifithrin μ, PFTμ) were utilized to assess interaction between Drp1 and p53, and the subsequent downstream impact on mitochondrial morphology and function, cardiomyocyte function, and sepsis phenotype.
    RESULTS: Both in vitro and murine models demonstrated an increase in physical Drp1/p53 interaction following LPS treatment, which was associated with increased p53 mitochondrial localization, and mitochondrial dysfunction. This Drp1/p53 interaction was inhibited by ΨDrp1, suggesting that this interaction is dependent on Drp1 activation. Treatment of H9c2 cells with either ΨDrp1 or PFTμ inhibited the LPS mediated localization of Drp1/p53 to the mitochondria, decreased oxidative stress, improved cellular respiration and ATP production. Similarly, treatment of BALB/c mice with either ΨDrp1 or PFTμ decreased LPS-mediated mitochondrial localization of p53, mitochondrial ROS in cardiac tissue, and subsequently improved cardiomyocyte contractile function and survival.
    CONCLUSION: Drp1/p53 interaction and mitochondrial localization is a key prodrome to mitochondrial damage in SIMD and inhibiting this interaction may serve as a therapeutic target.
    Keywords:  Bioenergetics; Isolated cardiomyocyte; LPS sepsis model; Lipopolysaccharide; Mitochondrial dynamics; Mitochondrial fission; Mitochondrial function; Septic cardiomyopathy; deltaPKC
    DOI:  https://doi.org/10.1016/j.yjmcc.2023.01.008
  2. PLoS Biol. 2023 Mar;21(3): e3001977
      Failures in mitophagy, a process by which damaged mitochondria are cleared, results in neurodegeneration, while enhancing mitophagy promotes the survival of dopaminergic neurons. Using an artificial intelligence platform, we employed a natural language processing approach to evaluate the semantic similarity of candidate molecules to a set of well-established mitophagy enhancers. Top candidates were screened in a cell-based mitochondrial clearance assay. Probucol, a lipid-lowering drug, was validated across several orthogonal mitophagy assays. In vivo, probucol improved survival, locomotor function, and dopaminergic neuron loss in zebrafish and fly models of mitochondrial damage. Probucol functioned independently of PINK1/Parkin, but its effects on mitophagy and in vivo depended on ABCA1, which negatively regulated mitophagy following mitochondrial damage. Autophagosome and lysosomal markers were elevated by probucol treatment in addition to increased contact between lipid droplets (LDs) and mitochondria. Conversely, LD expansion, which occurs following mitochondrial damage, was suppressed by probucol and probucol-mediated mitophagy enhancement required LDs. Probucol-mediated LD dynamics changes may prime the cell for a more efficient mitophagic response to mitochondrial damage.
    DOI:  https://doi.org/10.1371/journal.pbio.3001977
  3. Stem Cell Rev Rep. 2023 Mar 01.
      OBJECTIVES: Herein, we investigated the regenerative potential of functional mitochondria to restore endometrial injury.METHODS: The endometrium was disturbed with an intrauterine injection of 95% ethanol. Regeneration of the disturbed endometrium was achieved by transplantation of human placenta derived mitochondria followed by thrombin activated platelet rich plasma (hMTx). The transplantation method provided a biomimetic gel layer that stabilized and supported the functionality of the transplanted mitochondria to flourish regeneration of the disturbed endometrium. The presence of engrafted Rhodamine B labelled mitochondria was quantified at 12, 24, 48, and 72 h after transplantation.
    RESULTS: Detection of human-specific mitochondria mRNA in recipient rat uterus showed significant up-regulation of MT ATP-8, MT COX-1, MT COX -3, MT COX -2, MT ATP-6 (p = 0.009) in the hMTx treated group compared to the disturbed endometrium group. The hMTx group demonstrated showed regeneration through increased expressions of α-SMA, CK-18, CK-19, Connexin-40, E Cadherin, Claudin-1, Zona Occludin as compared with disturbed endometrium group. Experimental hMTx endometrial cells had significantly higher values of activities of NADH, NADPH, Cytochrome B5, Cytochrome P450, Complex I, Complex II, Complex III, Complex IV compared with disturbed endometrium indicating the regeneration of damaged endometrial cells at 72 h.
    CONCLUSIONS: Intrauterine hMTx was accounted to improve endometrial junction protein thus regeneration in the disturbed endometrium. Our Data provide the first evidence that hMTx promotes endometrial regeneration in the disturbed endometrium, paving the way for the development of a novel approach to human endometrial regeneration.
    Keywords:  Endometrial regeneration; Human placenta derived Mitochondria; Mitochondrial Transplantation; Platelet Rich Plasma
    DOI:  https://doi.org/10.1007/s12015-023-10516-2