bims-mikwok Biomed News
on Mitochondrial quality control
Issue of 2023‒08‒13
six papers selected by
Gavin McStay, Liverpool John Moores University



  1. Nat Struct Mol Biol. 2023 Aug 07.
      Mitochondria are dynamic organelles that continually respond to cellular stress. Recent studies have demonstrated that mitochondrial stress is relayed from mitochondria to the cytosol by the release of a proteolytic fragment of DELE1 that binds to the eIF2α kinase HRI to initiate integrated stress response (ISR) signaling. We report the cryo-electron microscopy structure of the C-terminal cleavage product of human DELE1, which assembles into a high-order oligomer. The oligomer consists of eight DELE1 monomers that assemble with D4 symmetry via two sets of hydrophobic inter-subunit interactions. We identified the key residues involved in DELE1 oligomerization, and confirmed their role in stabilizing the octamer in vitro and in cells using mutagenesis. We further show that assembly-impaired DELE1 mutants are compromised in their ability to induce HRI-dependent ISR activation in cell culture models. Together, our findings provide molecular insights into the activity of DELE1 and how it signals to promote ISR activity following mitochondrial insult.
    DOI:  https://doi.org/10.1038/s41594-023-01061-0
  2. Sci Signal. 2023 08 08. 16(797): eadk1008
      Fasting activates mTORC2 to stimulate mitochondrial fission and support mitochondrial respiration.
    DOI:  https://doi.org/10.1126/scisignal.adk1008
  3. Cell Death Differ. 2023 Aug 11.
      Mitochondria are essential organelles found in eukaryotic cells that play a crucial role in ATP production through oxidative phosphorylation (OXPHOS). Mitochondrial DNA depletion syndrome (MTDPS) is a group of genetic disorders characterized by the reduction of mtDNA copy number, leading to deficiencies in OXPHOS and mitochondrial functions. Mutations in FBXL4, a substrate-binding adaptor of Cullin 1-RING ubiquitin ligase complex (CRL1), are associated with MTDPS, type 13 (MTDPS13). Here, we demonstrate that, FBXL4 directly interacts with the mitophagy cargo receptors BNIP3 and BNIP3L, promoting their degradation through the ubiquitin-proteasome pathway via the assembly of an active CRL1FBXL4 complex. However, MTDPS13-associated FBXL4 mutations impair the assembly of an active CRL1FBXL4 complex. This results in a notable accumulation of BNIP3/3L proteins and robust mitophagy even at basal levels. Excessive mitophagy was observed in Knockin (KI) mice carrying a patient-derived FBXL4 mutation and cortical neurons (CNs)-induced from MTDPS13 patient human induced pluripotent stem cells (hiPSCs). In summary, our findings suggest that abnormal activation of BNIP3/BNIP3L-dependent mitophagy impairs mitochondrial homeostasis and underlies FBXL4-mutated MTDPS13.
    DOI:  https://doi.org/10.1038/s41418-023-01205-1
  4. NPJ Parkinsons Dis. 2023 Aug 08. 9(1): 120
      Mitochondrial dysfunction has been suggested to contribute to Parkinson's disease pathogenesis, though an understanding of the extent or exact mechanism of this contribution remains elusive. This has been complicated by challenging nature of pathway-based analysis and an inability simultaneously study multiple related proteins within human brain tissue. We used imaging mass cytometry (IMC) to overcome these challenges, measuring multiple protein targets, whilst retaining the spatial relationship between targets in post-mortem midbrain sections. We used IMC to simultaneously interrogate subunits of the mitochondrial oxidative phosphorylation complexes, and several key signalling pathways important for mitochondrial homoeostasis, in a large cohort of PD patient and control cases. We revealed a generalised and synergistic reduction in mitochondrial quality control proteins in dopaminergic neurons from Parkinson's patients. Further, protein-protein abundance relationships appeared significantly different between PD and disease control tissue. Our data showed a significant reduction in the abundance of PINK1, Parkin and phosphorylated ubiquitinSer65, integral to the mitophagy machinery; two mitochondrial chaperones, HSP60 and PHB1; and regulators of mitochondrial protein synthesis and the unfolded protein response, SIRT3 and TFAM. Further, SIRT3 and PINK1 did not show an adaptive response to an ATP synthase defect in the Parkinson's neurons. We also observed intraneuronal aggregates of phosphorylated ubiquitinSer65, alongside increased abundance of mitochondrial proteases, LONP1 and HTRA2, within the Parkinson's neurons with Lewy body pathology, compared to those without. Taken together, these findings suggest an inability to turnover mitochondria and maintain mitochondrial proteostasis in Parkinson's neurons. This may exacerbate the impact of oxidative phosphorylation defects and ageing related oxidative stress, leading to neuronal degeneration. Our data also suggest that that Lewy pathology may affect mitochondrial quality control regulation through the disturbance of mitophagy and intramitochondrial proteostasis.
    DOI:  https://doi.org/10.1038/s41531-023-00564-3
  5. IUBMB Life. 2023 Aug 10.
      The mitochondrial retrograde signaling (RTG) pathway of communication from mitochondria to the nucleus was first studied in yeast Saccharomyces cerevisiae. It rewires cellular metabolism according to the mitochondrial state by reprogramming nuclear gene expression in response to mitochondrial triggers. The main players involved in retrograde signaling are the Rtg1 and Rtg3 transcription factors, and a set of positive and negative regulators, including the Rtg2, Mks1, Lst8, and Bmh1/2 proteins. Retrograde regulation is integrated with other processes, including stress response, osmoregulation, and nutrient sensing through functional crosstalk with cellular pathways such as high osmolarity glycerol or target of rapamycin signaling. In this review, we summarize metabolic changes observed upon retrograde stimulation and analyze the progress made to uncover the mechanisms underlying the integration of regulatory circuits. Comparisons of the evolutionary adaptations of the retrograde pathway that have occurred in the different yeast groups can help to fully understand the process.
    Keywords:  RTG signaling; mitochondria; retrograde response; yeast
    DOI:  https://doi.org/10.1002/iub.2775
  6. Autophagy Rep. 2023 ;pii: 2242054. [Epub ahead of print]2(1):
      Mitophagy is a central component of the mitochondrial quality control machinery, which is necessary for cellular viability and bioenergetics. The E3 ubiquitin ligase CLEC16A (C-type lectin domain containing 16A) forms a tripartite mitophagy regulatory complex together with the E3 ligase RNF41 (ring finger protein 41) and the ubiquitin-specific peptidase USP8 (ubiquitin specific peptidase 8), yet CLEC16A structural/functional domains relevant for mitophagy are unknown. We identify that CLEC16A contains an internal intrinsically disordered region (IDR), which is important for CLEC16A function and stability. IDRs are flexible domains lacking fixed secondary structure and regulate an emerging number of diverse processes, yet they have been largely unstudied in mitophagy. We observe that the internal CLEC16A IDR is essential for CLEC16A degradation and is bound by RNF41 to promote CLEC16A turnover. This IDR also promotes assembly of the CLEC16A-RNF41-USP8 mitophagy regulatory complex. Thus, our study revealed the importance of IDRs in mitophagy via the regulation of CLEC16A abundance by RNF41, opening new structural insights into mitochondrial quality control.
    Keywords:  autophagy; clec16a; intrinsically disordered protein; mitochondria; ubiquitin
    DOI:  https://doi.org/10.1080/27694127.2023.2242054