bims-mikwok Biomed News
on Mitochondrial quality control
Issue of 2024–06–02
25 papers selected by
Gavin McStay, Liverpool John Moores University



  1. Autophagy. 2024 May 31.
      Mitochondria undergo fission and fusion, and their coordinated balance is crucial for maintaining mitochondrial homeostasis. In yeast, the dynamin-related protein Dnm1 is a mitochondrial fission factor acting from outside the mitochondria. We recently reported the mitochondrial intermembrane space protein Atg44/mitofissin/Mdi1/Mco8 as a novel fission factor, but the relationship between Atg44 and Dnm1 remains elusive. Here, we show that Atg44 is required to complete Dnm1-mediated mitochondrial fission under homeostatic conditions. Atg44-deficient cells often exhibit enlarged mitochondria with accumulated Dnm1 and rosary-like mitochondria with Dnm1 foci at constriction sites. These mitochondrial constriction sites retain the continuity of both the outer and inner membranes within an extremely confined space, indicating that Dnm1 is unable to complete mitochondrial fission without Atg44. Moreover, accumulated Atg44 proteins are observed at mitochondrial constriction sites. These findings suggest that Atg44 and Dnm1 cooperatively execute mitochondrial fission from inside and outside the mitochondria, respectively.
    Keywords:  Atg44; Dnm1; mitochondrial fission; mitofissin; mitophagy; yeast
    DOI:  https://doi.org/10.1080/15548627.2024.2360345
  2. Cell Rep. 2024 May 29. pii: S2211-1247(24)00622-3. [Epub ahead of print]43(6): 114294
      Ubiquitination of mitochondrial proteins provides a basis for the downstream recruitment of mitophagy machinery, yet whether ubiquitination of the machinery itself contributes to mitophagy is unknown. Here, we show that K63-linked polyubiquitination of the key mitophagy regulator TBK1 is essential for its mitophagy functions. This modification is catalyzed by the ubiquitin ligase TRIM5α and is required for TBK1 to interact with and activate a set of ubiquitin-binding autophagy adaptors including NDP52, p62/SQSTM1, and NBR1. Autophagy adaptors, along with TRIM27, enable TRIM5α to engage with TBK1 following mitochondrial damage. TRIM5α's ubiquitin ligase activity is required for the accumulation of active TBK1 on damaged mitochondria in Parkin-dependent and Parkin-independent mitophagy pathways. Our data support a model in which TRIM5α provides a mitochondria-localized, ubiquitin-based, self-amplifying assembly platform for TBK1 and mitophagy adaptors that is ultimately necessary for the recruitment of the core autophagy machinery.
    Keywords:  CP: Cell biology; NBR1; NDP52; Optineurin; TAX1BP1; TBK1; TRIM27/RFP; autophagy; p62; tripartite motif; ubiquitin ligase
    DOI:  https://doi.org/10.1016/j.celrep.2024.114294
  3. J Mol Biol. 2024 May 29. pii: S0022-2836(24)00226-2. [Epub ahead of print] 168631
      Mitophagy is a specific type of autophagy responsible for the selective elimination of dysfunctional or superfluous mitochondria, ensuring the maintenance of mitochondrial quality control. The initiation of mitophagy is coordinated by the ULK1 kinase complex, which engages mitophagy receptors via its FIP200 subunit. Whether FIP200 performs additional functions in the subsequent later phases of mitophagy beyond this initial step and how its regulation occurs, remains unclear. Our findings reveal that multiple phosphorylation events on FIP200 differentially control the early and late stages of mitophagy. Furthermore, these phosphorylation events influence FIP200's interaction with ATG16L1. In summary, our results highlight the necessity for precise and dynamic regulation of FIP200, underscoring its importance in the progression of mitophagy.
    Keywords:  ATG16L1; Atg1/ULK1 kinase complex; FIP200; autophagy; mitophagy
    DOI:  https://doi.org/10.1016/j.jmb.2024.168631
  4. Free Radic Biol Med. 2024 May 28. pii: S0891-5849(24)00498-2. [Epub ahead of print]221 235-244
      Dysregulated autophagy/mitophagy is one of the major causes of cardiac injury in ischemic conditions. Glycogen synthase kinase-3alpha (GSK-3α) has been shown to play a crucial role in the pathophysiology of cardiac diseases. However, the precise role of GSK-3α in cardiac mitophagy remains unknown. Herein, we investigated the role of GSK-3α in cardiac mitophagy by employing AC16 human cardiomyocytes under the condition of acute hypoxia. We observed that the gain-of-GSK-3α function profoundly induced mitophagy in the AC16 cardiomyocytes post-hypoxia. Moreover, GSK-3α overexpression led to increased ROS generation and mitochondrial dysfunction in cardiomyocytes, accompanied by enhanced mitophagy displayed by increased mt-mKeima intensity under hypoxia. Mechanistically, we identified that GSK-3α promotes mitophagy through upregulation of BNIP3, caused by GSK-3α-mediated increase in expression of HIF-1α and FOXO3a in cardiomyocytes post-hypoxia. Moreover, GSK-3α displayed a physical interaction with BNIP3 and, inhibited PINK1 and Parkin recruitment to mitochondria was observed specifically under hypoxia. Taken together, we identified a novel mechanism of mitophagy in human cardiomyocytes. GSK-3α promotes mitochondrial dysfunction and regulates FOXO3a -mediated BNIP3 overexpression in cardiomyocytes to facilitate mitophagy following hypoxia. An interaction between GSK-3α and BNIP3 suggests a role of GSK-3α in BNIP3 recruitment to the mitochondrial membrane where it enhances mitophagy in stressed cardiomyocytes independent of the PINK1/Parkin.
    Keywords:  BNIP3; FOXO3a; GSK-3alpha; Mitophagy; PINK1; Parkin
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2024.05.041
  5. Int J Med Sci. 2024 ;21(7): 1194-1203
      This study aims to elucidate the roles of Phosphoglycerate Mutase Family Member 5 (Pgam5) and Prohibitin 2 (Phb2) in the context of hyperglycemia-induced myocardial dysfunction, a critical aspect of diabetic cardiomyopathy. The research employed primary cardiomyocytes, which were then subjected to hyperglycemia treatment to mimic diabetic conditions. We used siRNA transfection to knock down Pgam5 and overexpressed Phb2 using adenovirus transfection to assess their individual and combined effects on cardiomyocyte health. Mitochondrial function was evaluated through measurements of mitochondrial membrane potential using the JC-1 probe, and levels of mitochondrial reactive oxygen species (ROS) were assessed. Additionally, the study involved qPCR analysis to quantify the transcriptional changes in genes related to mitochondrial fission and mitophagy. Our findings indicate that hyperglycemia significantly reduces cardiomyocyte viability and impairs mitochondrial function, as evidenced by decreased mitochondrial membrane potential and increased ROS levels. Pgam5 knockdown was observed to mitigate these adverse effects, preserving mitochondrial function and cardiomyocyte viability. On the molecular level, Pgam5 was found to regulate genes associated with mitochondrial fission (such as Drp1, Mff, and Fis1) and mitophagy (including Parkin, Bnip3, and Fundc1). Furthermore, overexpression of Phb2 countered the hyperglycemia-induced mitochondrial dysfunction and normalized the levels of key mitochondrial antioxidant enzymes. The combined data suggest a protective role for both Pgam5 knockdown and Phb2 overexpression against hyperglycemia-induced cellular and mitochondrial damage. The study elucidates the critical roles of Pgam5 and Phb2 in regulating mitochondrial dynamics in the setting of hyperglycemia-induced myocardial dysfunction. By modulating mitochondrial fission and mitophagy, Pgam5 and Phb2 emerge as key players in preserving mitochondrial integrity and cardiomyocyte health under diabetic conditions. These findings contribute significantly to our understanding of the molecular mechanisms underlying diabetic cardiomyopathy and suggest potential therapeutic targets for mitigating myocardial dysfunction in diabetes.
    Keywords:  Pgam5; Phb2; diabetic cardiomyopathy; mitochondrial fission; mitophagy
    DOI:  https://doi.org/10.7150/ijms.92872
  6. Mil Med Res. 2024 May 29. 11(1): 32
      Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
    Keywords:  Cancer; Cardiovascular disease; Digestive system disease; Kidney disease; Metabolic disease; Metabolism; Mitochondrial quality control; Nervous disease; Programmed cell death; Pulmonary disease
    DOI:  https://doi.org/10.1186/s40779-024-00536-5
  7. Cell Stress Chaperones. 2024 May 29. pii: S1355-8145(24)00076-2. [Epub ahead of print]
      Heart failure refers to a group of clinical syndromes in which various heart diseases lead to the inability of cardiac output to meet the metabolic needs of the body's tissues. Cardiac metabolism requires enormous amounts of energy; thus, impaired myocardial energy metabolism is considered a key factor in the occurrence and development of heart failure. Mitochondria serve as the primary energy source for cardiomyocytes, and their regular functionality underpins healthy cardiac function. The mitochondrial quality control system is a crucial mechanism for regulating the functionality of cardiomyocytes, and any abnormality in this system can potentially impact the morphology and structure of mitochondria, as well as the energy metabolism of cardiomyocytes. PGAM5, a multifunctional protein, plays a key role in the regulation of mitochondrial quality control through multiple pathways. Therefore, abnormal PGAM5 function is closely related to mitochondrial damage. This article reviews the mechanism of PGAM5's involvement in the regulation of the mitochondrial quality control system in the occurrence and development of heart failure, thereby providing a theoretical basis for future in-depth research.
    Keywords:  PGAM5; heart failure; mitochondrial autophagy; mitochondrial biogenesis; mitochondrial fission and fusion; mitochondrial quality control
    DOI:  https://doi.org/10.1016/j.cstres.2024.05.004
  8. Int J Med Sci. 2024 ;21(7): 1204-1212
      The mitochondrial unfolded protein response (UPRmt) is a pivotal cellular mechanism that ensures mitochondrial homeostasis and cellular survival under stress conditions. This study investigates the role of UPRmt in modulating the response of nasopharyngeal carcinoma cells to cisplatin-induced stress. We report that the inhibition of UPRmt via AEB5F exacerbates cisplatin cytotoxicity, as evidenced by increased lactate dehydrogenase (LDH) release and apoptosis, characterized by a surge in TUNEL-positive cells. Conversely, the activation of UPRmt with oligomycin attenuates these effects, preserving cell viability and reducing apoptotic markers. Immunofluorescence assays reveal that UPRmt activation maintains mitochondrial membrane potential and ATP production in the presence of cisplatin, countering the rise in reactive oxygen species (ROS) and inhibiting caspase-9 activation. These findings suggest that UPRmt serves as a cytoprotective mechanism in cancer cells, mitigating cisplatin-induced mitochondrial dysfunction and apoptosis. The data underscore the therapeutic potential of modulating UPRmt to improve the efficacy and reduce the side effects of cisplatin chemotherapy. This study provides a foundation for future research on the exploitation of UPRmt in cancer treatment, with the aim of enhancing patient outcomes by leveraging the cellular stress response pathways.
    Keywords:  mitochondria, cisplatin, oxidative stress; mitochondrial unfolded protein response; nasopharyngeal carcinoma
    DOI:  https://doi.org/10.7150/ijms.95624
  9. Sci Rep. 2024 May 31. 14(1): 12521
      Sirtuin1 (SIRT1) activity decreases the tuberous sclerosis complex 2 (TSC2) lysine acetylation status, inhibiting the mechanistic target of rapamycin complex 1 (mTORC1) signalling and concomitantly, activating autophagy. This study analyzes the role of TSC2 acetylation levels in its translocation to the lysosome and the mitochondrial turnover in both mouse embryonic fibroblast (MEF) and in mouse insulinoma cells (MIN6) as a model of pancreatic β cells. Resveratrol (RESV), an activator of SIRT1 activity, promotes TSC2 deacetylation and its translocation to the lysosome, inhibiting mTORC1 activity. An improvement in mitochondrial turnover was also observed in cells treated with RESV, associated with an increase in the fissioned mitochondria, positive autophagic and mitophagic fluxes and an enhancement of mitochondrial biogenesis. This study proves that TSC2 in its deacetylated form is essential for regulating mTORC1 signalling and the maintenance of the mitochondrial quality control, which is involved in the homeostasis of pancreatic beta cells and prevents from several metabolic disorders such as Type 2 Diabetes Mellitus.
    Keywords:  Acetylation; Lysosome; Mitophagy; Pancreatic β cells; TSC2; mTORC1
    DOI:  https://doi.org/10.1038/s41598-024-63525-7
  10. Pharmacol Res. 2024 May 28. pii: S1043-6618(24)00180-4. [Epub ahead of print]205 107235
      Diabetic cardiomyopathy (DCM) is a major complication of diabetes and is characterized by left ventricular dysfunction. Currently, there is a lack of effective treatments for DCM. Ubiquitin-specific protease 7 (USP7) plays a key role in various diseases. However, whether USP7 is involved in DCM has not been established. In this study, we demonstrated that USP7 was upregulated in diabetic mouse hearts and NMCMs co-treated with HG+PA or H9c2 cells treated with PA. Abnormalities in diabetic heart morphology and function were reversed by USP7 silencing through conditional gene knockout or chemical inhibition. Proteomic analysis coupled with biochemical validation confirmed that PCG1β was one of the direct protein substrates of USP7 and aggravated myocardial damage through coactivation of the PPARα signaling pathway. USP7 silencing restored the expression of fatty acid metabolism-related proteins and restored mitochondrial homeostasis by inhibiting mitochondrial fission and promoting fusion events. Similar effects were also observed in vitro. Our data demonstrated that USP7 promoted cardiometabolic metabolism disorders and mitochondrial homeostasis dysfunction via stabilizing PCG1β and suggested that silencing USP7 may be a therapeutic strategy for DCM.
    Keywords:  Cardio-metabolism; Diabetic cardiomyopathy; Mitochondrial homeostasis; PGC1β/PPARα; USP7
    DOI:  https://doi.org/10.1016/j.phrs.2024.107235
  11. Cell Death Differ. 2024 May 28.
      Pancreatic ductal adenocarcinoma (PDAC), the most prevalent type of pancreatic cancer, is one of the deadliest forms of cancer with limited therapy options. Overexpression of the heat shock protein 70 (HSP70) is a hallmark of cancer that is strongly associated with aggressive disease and worse clinical outcomes. However, the underlying mechanisms by which HSP70 allows tumor cells to thrive under conditions of continuous stress have not been fully described. Here, we report that PDAC has the highest expression of HSP70 relative to normal tissue across all cancers analyzed. Furthermore, HSP70 expression is associated with tumor grade and is further enhanced in metastatic PDAC. We show that genetic or therapeutic ablation of HSP70 alters mitochondrial subcellular localization, impairs mitochondrial dynamics, and promotes mitochondrial swelling to induce apoptosis. Mechanistically, we find that targeting HSP70 suppresses the PTEN-induced kinase 1 (PINK1) mediated phosphorylation of dynamin-related protein 1 (DRP1). Treatment with the HSP70 inhibitor AP-4-139B was efficacious as a single agent in primary and metastatic mouse models of PDAC. In addition, we demonstrate that HSP70 inhibition promotes the AMP-activated protein kinase (AMPK) mediated phosphorylation of Beclin-1, a key regulator of autophagic flux. Accordingly, we find that the autophagy inhibitor hydroxychloroquine (HCQ) enhances the ability of AP-4-139B to mediate anti-tumor activity in vivo. Collectively, our results suggest that HSP70 is a multi-functional driver of tumorigenesis that orchestrates mitochondrial dynamics and autophagy. Moreover, these findings support the rationale for concurrent inhibition of HSP70 and autophagy as a novel therapeutic approach for HSP70-driven PDAC.
    DOI:  https://doi.org/10.1038/s41418-024-01310-9
  12. Life Sci Alliance. 2024 Aug;pii: e202402608. [Epub ahead of print]7(8):
      In cells, mitochondria undergo constant fusion and fission. An essential factor for fission is the mammalian dynamin-related protein 1 (Drp1). Dysregulation of Drp1 is associated with neurodegenerative diseases including Parkinson's, cardiovascular diseases and cancer, making Drp1 a pivotal biomarker for monitoring mitochondrial status and potential pathophysiological conditions. Here, we developed nanobodies (Nbs) as versatile binding molecules for proteomics, advanced microscopy and live cell imaging of Drp1. To specifically enrich endogenous Drp1 with interacting proteins for proteomics, we functionalized high-affinity Nbs into advanced capture matrices. Furthermore, we detected Drp1 by bivalent Nbs combined with site-directed fluorophore labelling in super-resolution STORM microscopy. For real-time imaging of Drp1, we intracellularly expressed fluorescently labelled Nbs, so-called chromobodies (Cbs). To improve the signal-to-noise ratio, we further converted Cbs into a "turnover-accelerated" format. With these imaging probes, we visualized the dynamics of endogenous Drp1 upon compound-induced mitochondrial fission in living cells. Considering the wide range of research applications, the presented Nb toolset will open up new possibilities for advanced functional studies of Drp1 in disease-relevant models.
    DOI:  https://doi.org/10.26508/lsa.202402608
  13. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024 Apr;36(4): 425-429
      AMP-activated protein kinase (AMPK) is a widely distributed and evolutionarily conserved serine/threonine protein kinase present in eukaryotic cells. In regulating cellular energy metabolism, AMPK plays an extremely important role as an energy metabolic kinase. When the body is in a low energy state, AMPK is activated in response to changes in intracellular adenine nucleotide levels and is bound to adenosine monophosphate (AMP) or adenosine diphosphate (ADP). Activated AMPK regulates various metabolic processes, including lipid and glucose metabolism and cellular autophagy. AMPK directly promotes autophagy by phosphorylating autophagy-related proteins in the mammalian target of rapamycin complex 1 (mTORC1), serine/threonine protein kinase-dysregulated 51-like kinase 1 (ULK1) and type III phosphatidylinositol 3-kinase-vacuolar protein-sorting 34 (PIK3C3-VPS34) complexes. AMPK also indirectly promotes autophagy by regulating the expression of downstream autophagy-related genes of transcription factors such as forkhead box O3 (FOXO3), lysosomal function transcription factor EB (TFEB) and bromodomain protein 4 (BRD4). AMPK also regulates mitochondrial autophagy, induces the division of damaged mitochondria and promotes the transfer of the autophagic response to damaged mitochondria. Another function of AMPK is to regulate mitochondrial health by stimulating mitochondrial biogenesis and participating in various aspects of mitochondrial homeostasis regulation. This review discusses the specific regulation of mitochondrial biology and internal environmental homeostasis by AMPK signaling channels as central to the cellular response to energy stress and regulation of mitochondria, highlighting the key role of AMPK in regulating cellular autophagy and mitochondrial autophagy, as well as advances in research on the regulation of mitochondrial homeostasis.
    DOI:  https://doi.org/10.3760/cma.j.cn121430-20230302-00132
  14. Comp Biochem Physiol C Toxicol Pharmacol. 2024 May 27. pii: S1532-0456(24)00110-8. [Epub ahead of print] 109942
      Aflatoxin B1 (AFB1) is highly toxic to the liver and can cause excessive production of mitochondrial reactive oxygen species (mtROS) in hepatocytes, leading to oxidative stress, inflammation, fibrosis, cirrhosis, and even liver cancer. The overproduction of mtROS can induce mitophagy, but whether mtROS and mitophagy are involved in the liver injury induced by AFB1 in ducks remains unclear. In this study, we first demonstrated that overproduction of mtROS and mitophagy occurred during liver injury induced by AFB1 exposure in ducks. Then, by inhibiting mtROS and mitophagy, we found that the damage caused by AFB1 in ducks was significantly alleviated, and the overproduction of mtROS induced by AFB1 exposure could mediate the occurrence of mitophagy. These results suggested that mtROS-mediated mitophagy is involved in AFB1-induced duck liver injury, and they may be the prevention and treatment targets of AFB1 hepatotoxicity.
    Keywords:  Aflatoxin B(1); Duck; Liver; Mitophagy; mtROS
    DOI:  https://doi.org/10.1016/j.cbpc.2024.109942
  15. Biochim Biophys Acta Mol Basis Dis. 2024 May 25. pii: S0925-4439(24)00248-5. [Epub ahead of print]1870(6): 167259
       BACKGROUND: Alcohol-associated liver disease (ALD) is a leading cause of liver disease-related deaths worldwide. Unfortunately, approved medications for the treatment of this condition are quite limited. One promising candidate is the anthocyanin, Cyanidin-3-O-glucoside (C3G), which has been reported to protect mice against hepatic lipid accumulation, as well as fibrosis in different animal models. However, the specific effects and mechanisms of C3G on ALD remain to be investigated.
    EXPERIMENTAL APPROACH: In this report, a Gao-binge mouse model of ALD was used to investigate the effects of C3G on ethanol-induced liver injury. The mechanisms of these C3G effects were assessed using AML12 hepatocytes.
    RESULTS: C3G administration ameliorated ethanol-induced liver injury by suppressing hepatic oxidative stress, as well as through reducing hepatic lipid accumulation and inflammation. Mechanistically, C3G activated the AMPK pathway and enhanced mitophagy to eliminate damaged mitochondria, thus reducing mitochondria-derived reactive oxidative species in ethanol-challenged hepatocytes.
    CONCLUSIONS: The results of this study indicate that mitophagy plays a potentially important role underlying the hepatoprotective action of C3G, as demonstrated in a Gao-binge mouse model of ALD. Accordingly, C3G may serve as a promising, new therapeutic drug candidate for use in ALD.
    Keywords:  AMPK pathway; Alcoholic liver disease; Cyanidin-3-O-glucoside; mitophagy
    DOI:  https://doi.org/10.1016/j.bbadis.2024.167259
  16. Chem Biol Interact. 2024 May 28. pii: S0009-2797(24)00222-9. [Epub ahead of print] 111076
      Mitophagy is a distinct physiological process that can have beneficial or deleterious effects in particular tissues. Prior research suggests that mitophagic activity can be triggered by CaO2-PM-CsPbBr3 QDs, yet the specific role that mitophagy plays in hepatic injury induced by CaO2-PM-CsPbBr3 QDs has yet to be established. Accordingly, in this study a series of mouse model- and cell-based experiments were performed that revealed the ability of CaO2-PM-CsPbBr3 QDs to activate mitophagic activity. Golm1 was upregulated in response to CaO2-PM-CsPbBr3 QDs treatment, and overexpressing Golm1 induced autophagic flux in the murine liver and hepatocytes, whereas knocking down Golm1 had the opposite effect. CaO2-PM-CsPbBr3 QDs were also able to Golm1 expression, in turn promoting the degradation of P53 and decreasing the half-life of this protein. Overexpressing Golm1 was sufficient to suppress the apoptotic death of hepatocytes in vitro and in vivo, whereas the knockdown of Golm1 had the opposite effect. The ability of Golm1 to promote p53-mediated autophagy was found to be associated with the disruption of Beclin-1 binding to Bcl-2, and the Golm1 N-terminal domain was determined to be required for p53 interactions, inducing autophagic activity in a manner independent of helicase activity or RNA binding. Together, these results indicate that inhibiting Golm1 can promote p53-dependent autophagy via disrupting Beclin-1 binding to Bcl-2, highlighting a novel approach to mitigating liver injury induced by CaO2-PM-CsPbBr3 QDs.
    Keywords:  CaO2-PM-CsPbBr3 QDs; Golm1; mitochondrial autophagy; mtROS
    DOI:  https://doi.org/10.1016/j.cbi.2024.111076
  17. Basic Clin Pharmacol Toxicol. 2024 May 28.
      Aflatoxin B1 (AFB1) is extremely harmful to both humans and animals. Mitophagy is a selective process of self-elimination and has an important role in controlling mitochondrial quality. The present study aimed to investigate the effect of reactive oxygen species (ROS) accumulation on AFB1-induced mitophagy in HepG2 cells to provide a new perspective from which to design novel therapeutic strategies to treat AFB1 poisoning. ROS release was induced in HepG2 cells with AFB1 (10 μmol/L). Cell autophagy activity, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) levels, Parkin translocation and both the transcription and expression of mitophagy-related proteins were measured when N-acetyl-L-cysteine (NAC) partially decreased the ROS level, while the knockdown of nuclear factor erythroid 2-related factor 2 (Nrf2) resulted in a large accumulation of ROS. The results reveal that NAC pretreatment ameliorated the decline in both the MMP and the ATP levels while also activating phosphoglycerate mutase 5 (PGAM5)-PTEN-induced kinase 1 (PINK1)/Parkin, while the Nrf2 knockdown group exhibited the opposite trend. These results suggest that AFB1-induced mitophagy in HepG2 cells depends on ROS, and proper ROS activates mitophagy to play a protective role.
    Keywords:  Nrf2; PINK1/Parkin; aflatoxins B1; mitophagy; reactive oxygen species
    DOI:  https://doi.org/10.1111/bcpt.14034
  18. Poult Sci. 2024 May 15. pii: S0032-5791(24)00418-8. [Epub ahead of print]103(7): 103839
      Duck hepatitis A virus 1 (DHAV-1) is the primary cause of duck viral hepatitis, leading to sudden mortality in ducklings and significant economic losses in the duck industry. However, little is known about how DHAV-1 affects duckling liver at the molecular level. We conducted an analysis comparing the expression patterns of mRNAs and miRNAs in DHAV-1-infected duckling livers to understand the underlying mechanisms and dynamic changes. We identified 6,818 differentially expressed mRNAs (DEGs) and 144 differentially expressed microRNAs (DEMs) during DHAV-1 infection. Functional enrichment analysis of DEGs and miRNA target genes using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed their potential involvement in innate antiviral immunity, mitophagy, and pyroptosis. We constructed coexpression networks of mRNA-miRNA interactions and confirmed key DEMs (novel-mir333, novel-mir288, novel-mir197, and novel-mir71) using RT-qPCR. Further investigation demonstrated that DHAV-1 activates the RLRs signaling pathway, disrupts mitophagy, and induces pyroptosis. In conclusion, DHAV-1-induced antiviral immunity is closely linked to mitophagy, suggesting it could be a promising therapeutic target.
    Keywords:  DHAV-1; RLRs signaling pathway; liver; mitophagy
    DOI:  https://doi.org/10.1016/j.psj.2024.103839
  19. BMC Cardiovasc Disord. 2024 May 29. 24(1): 280
       BACKGROUND: Myocardial ischemia-reperfusion injury (I/RI) is a major cause of perioperative cardiac-related adverse events and death. Studies have shown that sevoflurane postconditioning (SpostC), which attenuates I/R injury and exerts cardioprotective effects, regulates mitochondrial dynamic balance via HIF-1α, but the exact mechanism is unknown. This study investigates whether the PI3K/AKT pathway in SpostC regulates mitochondrial dynamic balance by mediating HIF-1α, thereby exerting myocardial protective effects.
    METHODS: The H9C2 cardiomyocytes were cultured to establish the hypoxia-reoxygenation (H/R) model and randomly divided into 4 groups: Control group, H/R group, sevoflurane postconditioning (H/R + SpostC) group and PI3K/AKT blocker (H/R + SpostC + LY) group. Cell survival rate was determined by CCK-8; Apoptosis rate was determined by flow cytometry; mitochondrial membrane potential was evaluated by Mito Tracker™ Red; mRNA expression levels of AKT, HIF-1α, Opa1and Drp1 were detected by quantitative real-time polymerase chain reaction (qRT-PCR); Western Blot assay was used to detect the protein expression levels of AKT, phosphorylated AKT (p-AKT), HIF-1α, Opa1 and Drp1.
    RESULTS: Compared with the H/R group, the survival rate of cardiomyocytes in the H/R + SpostC group increased, the apoptosis rate decreased and the mitochondrial membrane potential increased. qRT-PCR showed that the mRNA expression of HIF-1α and Opa1 were higher in the H/R + SpostC group compared with the H/R group, whereas the transcription level of Drp1 was lower in the H/R + SpostC group. In the H/R + SpostC + LY group, the mRNA expression of HIF-1α was lower than the H/R + SpostC group. There was no difference in the expression of Opa1 mRNA between the H/R group and the H/R + SpostC + LY group. WB assay results showed that compared with the H/R group, the protein expression levels of HIF-1α, Opa1, P-AKT were increased and Drp1 protein expression levels were decreased in the H/R + SpostC group. HIF-1α, P-AKT protein expression levels were decreased in the H/R + SpostC + LY group compared to the H/R + SpostC group.
    CONCLUSION: SpostC mediates HIF-1α-regulated mitochondrial fission and fusion-related protein expression to maintain mitochondrial dynamic balance by activating the PI3K/AKT pathway and increasing AKT phosphorylation, thereby attenuating myocardial I/R injury.
    DOI:  https://doi.org/10.1186/s12872-024-03868-1
  20. IET Syst Biol. 2024 May 30.
      Genes associated with endoplasmic reticulum stress (ERS) and mitophagy can be conducive to predicting solid tumour prognosis. The authors aimed to develop a prognosis prediction model for these genes in lung adenocarcinoma (LUAD). Relevant gene expression and clinical information were collected from public databases including Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). A total of 265 differentially expressed genes was finally selected (71 up-regulated and 194 downregulated) in the LUAD dataset. Among these, 15 candidate ERS and mitophagy genes (ATG12, CSNK2A1, MAP1LC3A, MAP1LC3B, MFN2, PGAM5, PINK1, RPS27A, SQSTM1, SRC, UBA52, UBB, UBC, ULK1, and VDAC1) might be critical to LUAD based on the expression analysis after crossing with the ERS and mitochondrial autophagy genes. The prediction model demonstrated the ability to effectively predict the 5-, 3-, and 1-year prognoses of LUAD patients in both GEO and TCGA databases. Moreover, high VDAC1 expression was associated with poor overall survival in LUAD (p < 0.001), suggesting it might be a critical gene for LUAD prognosis prediction. Overall, the prognosis model based on ERS and mitophagy genes in LUAD can be useful for evaluating the prognosis of patients with LUAD, and VDAC1 may serve as a promising biomarker for LUAD prognosis.
    Keywords:  bioinformatics; genomics; lung; tumours
    DOI:  https://doi.org/10.1049/syb2.12092
  21. Neurobiol Stress. 2024 Jul;31 100643
      Depression, or major depressive disorder, poses a significant burden for both individuals and society, affecting approximately 10.8% of the general population. This psychiatric disorder leads to approximately 800,000 deaths per year. A combination of genetic and environmental factors such as early life stress (ELS) increase the risk for development of depression in humans, and a clear role for the hippocampus in the pathophysiology of depression has been shown. Nevertheless, the underlying mechanisms of depression remain poorly understood, resulting in a lack of effective treatments. To better understand the core mechanisms underlying the development of depression, we used a cross-species design to investigate shared hippocampal pathophysiological mechanisms in mouse ELS and human depression. Mice were subjected to ELS by a maternal separation paradigm, followed by RNA sequencing analysis of the adult hippocampal tissue. This identified persistent transcriptional changes linked to mitochondrial stress response pathways, with oxidative phosphorylation and protein folding emerging as the main mechanisms affected by maternal separation. Remarkably, there was a significant overlap between the pathways involved in mitochondrial stress response we observed and publicly available RNAseq data from hippocampal tissue of depressive patients. This cross-species conservation of changes in gene expression of mitochondria-related genes suggests that mitochondrial stress may play a pivotal role in the development of depression. Our findings highlight the potential significance of the hippocampal mitochondrial stress response as a core mechanism underlying the development of depression. Further experimental investigations are required to expand our understanding of these mechanisms.
    Keywords:  Cross-species analysis; Depression; Early life stress; Hippocampus; Maternal separation; Mitochondrial stress response; RNA-Sequencing; Transcriptome
    DOI:  https://doi.org/10.1016/j.ynstr.2024.100643
  22. Autophagy. 2024 May 26.
      The dysregulation of membrane protein expression has been implicated in tumorigenesis and progression, including hepatocellular carcinoma (HCC). In this study, we aimed to identify membrane proteins that modulate HCC viability. To achieve this, we performed a CRISPR activation screen targeting human genes encoding membrane-associated proteins, revealing TMX2 as a potential driver of HCC cell viability. Gain- and loss-of-function experiments demonstrated that TMX2 promoted growth and tumorigenesis of HCC. Clinically, TMX2 was an independent prognostic factor for HCC patients. It was significantly upregulated in HCC tissues and associated with poor prognosis of HCC patients. Mechanistically, TMX2 was demonstrated to promote macroautophagy/autophagy by facilitating KPNB1 nuclear export and TFEB nuclear import. In addition, TMX2 interacted with VDAC2 and VADC3, assisting in the recruitment of PRKN to defective mitochondria to promote cytoprotective mitophagy during oxidative stress. Most interestingly, HCC cells responded to oxidative stress by upregulating TMX2 expression and cell autophagy. Knockdown of TMX2 enhanced the anti-tumor effect of lenvatinib. In conclusion, our findings emphasize the pivotal role of TMX2 in driving the HCC cell viability by promoting both autophagy and mitophagy. These results suggest that TMX2 May serve as a prognostic marker and promising therapeutic target for HCC treatment.
    Keywords:  Autophagy; CRISPR activation screening; hepatocellular carcinoma (HCC); lenvatinib; thioredoxin related transmembrane protein 2
    DOI:  https://doi.org/10.1080/15548627.2024.2358732
  23. bioRxiv. 2024 May 18. pii: 2024.05.15.594447. [Epub ahead of print]
      The rapid and sustained proliferation in cancer cells requires accelerated protein synthesis. Accelerated protein synthesis and disordered cell metabolism in cancer cells greatly increase the risk of translation errors. ribosome-associated quality control (RQC) is a recently discovered mechanism for resolving ribosome collisions caused by frequent translation stalls. The role of the RQC pathway in cancer initiation and progression remains controversial and confusing. In this study, we investigated the pathogenic role of mitochondrial stress-induced protein carboxyl-terminal terminal alanine and threonine tailing (msiCAT-tailing) in glioblastoma (GBM), which is a specific RQC response to translational arrest on the outer mitochondrial membrane. We found that msiCAT-tailed mitochondrial proteins frequently exist in glioblastoma stem cells (GSCs). Ectopically expressed msiCAT-tailed mitochondrial ATP synthase F1 subunit alpha (ATP5α) protein increases the mitochondrial membrane potential and blocks mitochondrial permeability transition pore (MPTP) formation/opening. These changes in mitochondrial properties confer resistance to staurosporine (STS)-induced apoptosis in GBM cells. Therefore, msiCAT-tailing can promote cell survival and migration, while genetic and pharmacological inhibition of msiCAT-tailing can prevent the overgrowth of GBM cells.
    Highlights: The RQC pathway is disturbed in glioblastoma (GBM) cellsmsiCAT-tailing on ATP5α elevates mitochondrial membrane potential and inhibits MPTP openingmsiCAT-tailing on ATP5α inhibits drug-induced apoptosis in GBM cellsInhibition of msiCAT-tailing impedes overall growth of GBM cells.
    DOI:  https://doi.org/10.1101/2024.05.15.594447
  24. J Physiol. 2024 May 25.
      World Health Organisation data suggest that up to 99% of the global population are exposed to air pollutants above recommended levels. Impacts to health range from increased risk of stroke and cardiovascular disease to chronic respiratory conditions, and air pollution may contribute to over 7 million premature deaths a year. Additionally, mounting evidence suggests that in utero or early life exposure to particulate matter (PM) in ambient air pollution increases the risk of neurodevelopmental impairment with obvious lifelong consequences. Identifying brain-specific cellular targets of PM is vital for determining its long-term consequences. We previously established that microglial-like BV2 cells were particularly sensitive to urban (U)PM-induced damage including reactive oxygen species production, which was abrogated by a mitochondrially targeted antioxidant. Here we extend those studies to find that UPM treatment causes a rapid impairment of mitochondrial function and increased mitochondrial fragmentation. However, there is a subsequent restoration of mitochondrial and therefore cell health occurring concomitantly with upregulated measures of mitochondrial biogenesis and mitochondrial load. Our data highlight that protecting mitochondrial function may represent a valuable mechanism to offset the effects of UPM exposure in the neonatal brain. KEY POINTS: Air pollution represents a growing risk to long-term health especially in early life, and the CNS is emerging a target for airborne particulate matter (PM). We previously showed that microglial-like BV2 cells were vulnerable to urban (U)PM exposure, which impaired cell survival and promoted reactive oxygen species production. Here we find that, following UPM exposure, BV2 mitochondrial membrane potential is rapidly reduced, concomitant with decreased cellular bioenergetics and increased mitochondrial fission. However, markers of mitochondrial biogenesis and mitochondrial mass are subsequently induced, which may represent a cellular mitigation strategy. As mitochondria are more vulnerable in the developing brain, exposure to air pollution may represent a greater risk to lifelong health in this cohort; conversely, promoting mitochondrial integrity may offset these risks.
    Keywords:  BV2; air pollution; biogenesis; microglia; mitochondria; particulate matter
    DOI:  https://doi.org/10.1113/JP285978
  25. Cell Death Dis. 2024 May 27. 15(5): 364
      Mitochondrial dysfunction and oxidative stress are important mechanisms for secondary injury after traumatic brain injury (TBI), which result in progressive pathophysiological exacerbation. Although the Fibronectin type III domain-containing 5 (FNDC5) was reported to repress oxidative stress by retaining mitochondrial biogenesis and dynamics, its possible role in the secondary injury after TBI remain obscure. In present study, we observed that the level of serum irisin (the cleavage product of FNDC5) significantly correlated with the neurological outcomes of TBI patients. Knockout of FNDC5 increased the lesion volume and exacerbated apoptosis and neurological deficits after TBI in mice, while FNDC5 overexpression yielded a neuroprotective effect. Moreover, FNDC5 deficiency disrupted mitochondrial dynamics and function. Activation of Sirtuin 3 (SIRT3) alleviated FNDC5 deficiency-induced disruption of mitochondrial dynamics and bioenergetics. In neuron-specific SIRT3 knockout mice, FNDC5 failed to attenuate TBI-induced mitochondrial damage and brain injuries. Mechanically, FNDC5 deficiency led to reduced SIRT3 expression via enhanced ubiquitin degradation of transcription factor Nuclear factor erythroid 2-related factor 2 (NRF2), which contributed to the hyperacetylation and inactivation of key regulatory proteins of mitochondrial dynamics and function, including OPA1 and SOD2. Finally, engineered RVG29-conjugated nanoparticles were generated to selectively and efficiently deliver irisin to the brain of mice, which yielded a satisfactory curative effect against TBI. In conclusion, FNDC5/irisin exerts a protective role against acute brain injury by promoting SIRT3-dependent mitochondrial quality control and thus represents a potential target for neuroprotection after TBI.
    DOI:  https://doi.org/10.1038/s41419-024-06748-w