bims-mikwok Biomed News
on Mitochondrial quality control
Issue of 2024‒09‒22
forty-six papers selected by
Gavin McStay, Liverpool John Moores University



  1. Research (Wash D C). 2022 ;2022 0001
      Disruption of the mitochondrial quality surveillance (MQS) system contributes to mitochondrial dysfunction in diabetic cardiomyopathy (DCM). In this study, we observed that cardiac expression of phosphoglycerate mutase 5 (PGAM5), a mitochondrial Ser/Thr protein phosphatase, is upregulated in mice with streptozotocin-induced DCM. Notably, DCM-related cardiac structural and functional deficits were negated in cardiomyocyte-specific Pgam5 knockout (Pgam5CKO ) mice. Hyperglycemic stress impaired adenosine triphosphate production, reduced respiratory activity, and prolonged mitochondrial permeability transition pore opening in acutely isolated neonatal cardiomyocytes from control Pgam5f/f mice, and these effects were markedly prevented in cardiomyocytes from Pgam5CKO mice. Likewise, three main MQS-governed processes-namely, mitochondrial fission/fusion cycling, mitophagy, and biogenesis-were disrupted by hyperglycemia in Pgam5f/f , but not in Pgam5CKO , cardiomyocytes. On the basis of bioinformatics prediction of interaction between PGAM5 and prohibitin 2 (PHB2), an inner mitochondrial membrane-associated scaffolding protein, co-immunoprecipitation, and immunoblot assays demonstrated that PGAM5 dephosphorylates PHB2 on Ser91. Transfection of cardiomyocytes with phosphodefective or phosphomimetic Ser91 mutants of PHB2 confirmed a critical role for PGAM5-mediated dephosphorylation of PHB2 in mitochondrial dysfunction associated with hyperglycemic stress. Furthermore, knockin mice expressing phosphomimetic PHB2S91D were resistant to diabetes-induced cardiac dysfunction. Our findings highlight the PGAM-PHB2 axis as a novel and critical regulator of mitochondrial dysfunction in DCM.
    DOI:  https://doi.org/10.34133/research.0001
  2. J Biol Chem. 2024 Sep 12. pii: S0021-9258(24)02276-2. [Epub ahead of print] 107775
      Damaged mitochondria are selectively eliminated in a process called mitophagy. PINK1 and Parkin amplify ubiquitin signals on damaged mitochondria, which are then recognized by autophagy adaptors to induce local autophagosome formation. NDP52 and OPTN, two essential mitophagy adaptors, facilitate de novo synthesis of pre-autophagosomal membranes near damaged mitochondria by linking ubiquitinated mitochondria and ATG8 family proteins and by recruiting core autophagy initiation components. The multifunctional serine/threonine kinase TBK1 also plays important roles in mitophagy. OPTN directly binds TBK1 to form a positive feedback loop for isolation membrane expansion. TBK1 is also thought to indirectly interact with NDP52; however, its role in NDP52-driven mitophagy remains largely unknown. Here, we focused on two TBK1 adaptors, AZI2/NAP1 and TBKBP1/SINTBAD, that are thought to mediate the TBK1-NDP52 interaction. We found that both AZI2 and TBKBP1 are recruited to damaged mitochondria during Parkin-mediated mitophagy. Further, a series of AZI2 and TBKBP1 knockout constructs combined with an OPTN knockout showed that AZI2, but not TBKBP1, impacts NDP52-driven mitophagy. In addition, we found that AZI2 at S318 is phosphorylated during mitophagy, the impairment of which slightly inhibits mitochondrial degradation. These results suggest that AZI2, in concert with TBK1, plays an important role in NDP52-driven mitophagy.
    Keywords:  autophagy; mitochondria; mitophagy; polyubiquitin chain; serine/threonine protein kinase
    DOI:  https://doi.org/10.1016/j.jbc.2024.107775
  3. J Am Heart Assoc. 2024 Sep 18. e036555
      Engaging in regular exercise and physical activity contributes to delaying the onset of cardiovascular diseases (CVDs). However, the physiological mechanisms underlying the benefits of regular exercise or physical activity in CVDs remain unclear. The disruption of mitochondrial homeostasis is implicated in the pathological process of CVDs. Exercise training effectively delays the onset and progression of CVDs by significantly ameliorating the disruption of mitochondrial homeostasis. This includes improving mitochondrial biogenesis, increasing mitochondrial fusion, decreasing mitochondrial fission, promoting mitophagy, and mitigating mitochondrial morphology and function. This review provides a comprehensive overview of the benefits of physical exercise in the context of CVDs, establishing a connection between the disruption of mitochondrial homeostasis and the onset of these conditions. Through a detailed examination of the underlying molecular mechanisms within mitochondria, the study illuminates how exercise can provide innovative perspectives for future therapies for CVDs.
    Keywords:  cardiovascular diseases; exercise; exerkines; mitochondrial homeostasis
    DOI:  https://doi.org/10.1161/JAHA.124.036555
  4. J Neuroinflammation. 2024 Sep 18. 21(1): 228
      BACKGROUND: During brain aging, disturbances in neuronal phospholipid metabolism result in impaired cognitive function and dysregulation of neurological processes. Mutations in iPLA2β are associated with neurodegenerative conditions that significantly impact brain phospholipids. iPLA2β deficiency exacerbates mitochondrial dysfunction and abnormal mitochondrial accumulation. We hypothesized that iPLA2β contributes to age-related cognitive decline by disrupting neuronal mitophagy.METHODOLOGY: We used aged wild-type (WT) mice and iPLA2β-/- mice as natural aging models to assess cognitive performance, iPLA2β expression in the cortex, levels of chemokines and inflammatory cytokines, and mitochondrial dysfunction, with a specific focus on mitophagy and the mitochondrial phospholipid profile. To further elucidate the role of iPLA2β, we employed adeno-associated virus (AAV)-mediated iPLA2β overexpression in aged mice and re-evaluated these parameters.
    RESULTS: Our findings revealed a significant reduction in iPLA2β levels in the prefrontal cortex of aged brains. Notably, iPLA2β-deficient mice exhibited impaired learning and memory. Loss of iPLA2β in the PFC of aged mice led to increased levels of chemokines and inflammatory cytokines. This damage was associated with altered mitochondrial morphology, reduced ATP levels due to dysregulation of the parkin-independent mitophagy pathway, and changes in the mitochondrial phospholipid profile. AAV-mediated overexpression of iPLA2β alleviated age-related parkin-independent mitophagy pathway dysregulation in primary neurons and the PFC of aged mice, reduced inflammation, and improved cognitive function.
    CONCLUSIONS: Our study suggests that age-related iPLA2β loss in the PFC leads to cognitive decline through the disruption of mitophagy. These findings highlight the potential of targeting iPLA2β to ameliorate age-related neurocognitive disorders.
    DOI:  https://doi.org/10.1186/s12974-024-03219-z
  5. Pharmacol Res. 2024 Sep 16. pii: S1043-6618(24)00359-1. [Epub ahead of print] 107414
      Mitochondrial morphology and function change dynamically in response to intracellular signaling and the surrounding environment. The mitochondrial fission factor Mff, which localizes to the outer mitochondrial membrane, mediates not only mitochondrial fission by recruiting the dynamin-related GTPase Drp1 to mitochondrial fission sites but also the double-stranded RNA-induced antiviral response on mitochondria through mitochondrial antiviral signaling (MAVS). Mff is reported to be regulated by AMP-activated protein kinase (AMPK)-mediated protein phosphorylation and alternative pre-mRNA splicing; however, the relationships among RNA splicing, phosphorylation, and multiple functions of Mff have not been fully understood. Here, we showed that mouse Mff has a tissue-specific splicing pattern, and at least eight Mff splice isoforms were expressed in mouse embryonic fibroblasts (MEFs). We introduced single Mff isoforms into Mff knockout MEFs and found that insertion of exon 6 just after the phosphorylation site, by the alternative splicing, reduced its phosphorylation by AMPK and its functions in mitochondrial fission and the antiviral response. In addition, the underlying mechanism repressing these functions was independent of phosphorylation. These results indicate that multiple functions of Mff on mitochondria are regulated by AMPK-mediated phosphorylation and alternative splicing, under the control of energy metabolism and cellular differentiation.
    Keywords:  Alternative splicing; Antiviral innate immune response; Energy, metabolism; Mitochondrial fission; mitochondria
    DOI:  https://doi.org/10.1016/j.phrs.2024.107414
  6. Nat Commun. 2024 Sep 19. 15(1): 7707
      Mutations in parkin and PINK1 cause early-onset Parkinson's disease (EOPD). The ubiquitin ligase parkin is recruited to damaged mitochondria and activated by PINK1, a kinase that phosphorylates ubiquitin and the ubiquitin-like domain of parkin. Activated phospho-parkin then ubiquitinates mitochondrial proteins to target the damaged organelle for degradation. Here, we present the mechanism of activation of a new class of small molecule allosteric modulators that enhance parkin activity. The compounds act as molecular glues to enhance the ability of phospho-ubiquitin (pUb) to activate parkin. Ubiquitination assays and isothermal titration calorimetry with the most active compound (BIO-2007817) identify the mechanism of action. We present the crystal structure of a closely related compound (BIO-1975900) bound to a complex of parkin and two pUb molecules. The compound binds next to pUb on RING0 and contacts both proteins. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments confirm that activation occurs through release of the catalytic Rcat domain. In organello and mitophagy assays demonstrate that BIO-2007817 partially rescues the activity of parkin EOPD mutants, R42P and V56E, offering a basis for the design of activators as therapeutics for Parkinson's disease.
    DOI:  https://doi.org/10.1038/s41467-024-51889-3
  7. Genes Dis. 2024 Nov;11(6): 101266
      Abnormal mitochondrial dynamics can lead to seizures, and improved mitochondrial dynamics can alleviate seizures. Vacuolar protein sorting 13D (VPS13D) is closely associated with regulating mitochondrial homeostasis and autophagy. However, further investigation is required to determine whether VPS13D affects seizures by influencing mitochondrial dynamics and autophagy. We aimed to investigate the influence of VPS13D on behavior in a rat model of acute epileptic seizures. Hence, we established an acute epileptic seizure rat model and employed the CRISPR/CAS9 technology to construct a lentivirus to silence the Vps13d gene. Furthermore, we used the HT22 mouse hippocampal neuron cell line to establish a stable strain with suppressed expression of Vps13d in vitro. Then, we performed quantitative proteomic and bioinformatics analyses to confirm the mechanism by which VPS13D influences mitochondrial dynamics and autophagy, both in vitro and in vivo using the experimental acute epileptic seizure model. We found that knockdown of Vps13d resulted in reduced seizure latency and increased seizure frequency in the experimental rats. Immunofluorescence staining and western blot analysis revealed a significant increase in mitochondrial dynamin-related protein 1 expression following Vps13d knockdown. Moreover, we observed a significant reduction in LC3II protein expression levels and the LC3II/LC3I ratio (indicators for autophagy) accompanied by a significant increase in P62 expression (an autophagy adaptor protein). The proteomic analysis confirmed the up-regulation of P62 protein expression. Therefore, we propose that VPS13D plays a role in modulating seizures by influencing mitochondrial dynamics and autophagy.
    Keywords:  Autophagy; Mitochondrial dynamics; Mitochondrial fission; Seizures; VPS13D
    DOI:  https://doi.org/10.1016/j.gendis.2024.101266
  8. Free Radic Biol Med. 2024 Sep 13. pii: S0891-5849(24)00659-2. [Epub ahead of print]224 521-539
      Mitochondrial dysfunction and oxidative stress are involved in the development of contrast-induced acute kidney injury (CI-AKI). The present study aimed to reveal the role of transient receptor potential ankyrin 1 (TRPA1), an oxidative sensor, in CI-AKI. Trpa1PT-/- mice with Trpa1 conditionally knocked out in renal proximal tubular (PT) cells, Trpa1 overexpression mice (Trpa1-OE), and TRPA1 agonists and antagonists were used to study its function in a mouse model of iohexol-induced CI-AKI. We found that TRPA1 was functionally expressed in PT cells. Activation of TRPA1 with cinnamaldehyde or overexpression of Trpa1 remarkably ameliorated renal tubular injury and dysfunction in a mouse model of CI-AKI, while CI-AKI was significantly exacerbated in Trpa1PT-/- mice. Proteomics demonstrated that mouse kidneys with CI-AKI had downregulated proteins involved in mitochondrial dynamics and upregulated mitophagy-associated proteins. The beneficial effects of TRPA1 activation/overexpression on CI-AKI were associated with improved mitochondrial function, decreased mitochondrial fission and oxidative stress, enhanced mitophagy, and less apoptosis of renal tubular cells. TRPA1-induced decreases in mitochondrial fission were linked to upregulated fusion-related proteins (mitofusin 1, mitofusin 2 and optic atrophy 1) and downregulated fission mediator, phosphorylated dynamin-related protein 1 (Drp1). Importantly, inhibition of Drp1 with mitochondrial division inhibitor 1 improved CI-AKI. In addition, the decreased mitochondrial fission was also mediated by inactivation of AMP-activated protein kinase which mediates mitochondrial biogenesis. The findings suggest that TRPA1 plays a protective role in CI-AKI through regulating mitochondrial fission/fusion, biogenesis, and dysfunction. Activating TRPA1 may become novel therapeutic strategies for the prevention of CI-AKI.
    Keywords:  Acute kidney injury; Contrast medium; Contrast-induced nephropathy; Drp1; TRPA1
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2024.09.012
  9. Oncogene. 2024 Sep 16.
      Cancer cells preferentially utilize glycolysis for energy production, and GAPDH is a critical enzyme in glycolysis. Parkin is a tumor suppressor and a key protein involved in mitophagy regulation. However, the tumor suppression mechanism of Parkin has still not been elucidated. In this study, we identified mitochondrial GAPDH as a new substrate of the E3 ubiquitin ligase Parkin, which mediated GAPDH ubiquitination in human cervical cancer. The translocation of GAPDH into mitochondria was driven by the PINK1 kinase, and either PINK1 or GAPDH mutation prevented the accumulation of GAPDH in mitochondria. Parkin caused the ubiquitination of GAPDH at multiple sites (K186, K215, and K219) located within the enzyme-catalyzed binding domain of the GAPDH protein. GAPDH ubiquitination was required for mitophagy, and stimulation of mitophagy suppressed cervical cancer cell growth, indicating that mitophagy serves as a type of cell death. Mechanistically, PHB2 served as a key mediator in GAPDH ubiquitination-induced mitophagy through stabilizing PINK1 protein and GAPDH mutation resulted in the reduced distribution of PHB2 in mitophagic vacuole. In addition, ubiquitination of GAPDH decreased its phosphorylation level and enzyme activity and inhibited the glycolytic pathway in cervical cancer cells. The results of in vivo experiments also showed that the GAPDH mutation increased glycolysis in cervical cancer cells and accelerated tumorigenesis. Thus, we concluded that Parkin may exert its anticancer function by ubiquitinating GAPDH in mitochondria. Taken together, our study further clarified the molecular mechanism of tumor suppression by Parkin through the regulation of energy metabolism, which provides an experimental basis for the development of new drugs for the treatment of human cervical cancer.
    DOI:  https://doi.org/10.1038/s41388-024-03157-3
  10. Open Life Sci. 2024 ;19(1): 20220958
      This study aimed to clarify the role of rapamycin in the PINK1/Parkin signaling pathway in mitophagy in podocytes and the role of voltage-dependent anion channel 1 (VDAC1) in the PINK1/Parkin signaling pathway in mouse glomerular podocytes. For this purpose, podocytes were cultured with rapamycin and observed using microscopy. The apoptosis rate of podocytes was detected by flow cytometry. Changes in the mitochondrial membrane potential were measured. The autophagy-related proteins VDAC1, PINK1, Parkin, and LC3 were detected, and mitochondrial autophagosomes were observed via transmission electron microscopy. In the present study, we demonstrated that the number of podocytes treated with rapamycin was significantly reduced. Compared with those in the control group, the apoptosis rate of podocytes and the degree of mitochondrial membrane potential depolarization were significantly higher. We also found the expression levels of VDAC1, PINK1, Parkin, and LC3 were significantly increased. In the rapamycin-treated group, the numbers of swollen mitochondria and mitochondrial autophagosomes were significantly higher. Finally, we showed that rapamycin can upregulate the expression of VDAC1, PINK1, Parkin, and LC3 in glomerular podocytes, which is correlated with mitophagy. VDAC1 is involved in mitophagy and is related to the PINK1/Parkin signaling pathway, serving as an indicator of mitophagy in podocytes.
    Keywords:  VDAC1; mitophagy; podocyte; rapamycin; signaling pathway
    DOI:  https://doi.org/10.1515/biol-2022-0958
  11. Plant Commun. 2024 Sep 13. pii: S2590-3462(24)00529-7. [Epub ahead of print] 101133
      Proper mitochondrial function is crucial to plant growth and development. Inhibition of mitochondrial translation leads to mitochondrial proteotoxic stress, which triggers a protective transcriptional response that regulates nuclear gene expression, commonly referred to as the mitochondrial unfolded protein response (UPRmt). Although UPRmt has been extensively studied in yeast and mammals, very little is known about UPRmt in plants. Here, we show that mitochondrial translational stress inhibits plant growth and development by inducing jasmonic acid (JA) biosynthesis and signaling. The inhibitory effect of mitochondrial translational stress on plant growth was alleviated in JA signaling defective mutants coi1-2, myc2, and myc234. Genetic analysis indicates that Arabidopsis mitochondrial ribosomal protein L1 (MRPL1), a key factor in UPRmt, regulates plant growth in a CORONATINE-INSENSITIVE1 (COI1)-dependent manner. Moreover, under mitochondrial translational stress, MYC2 showed direct binding to G-boxes in the ETHYLENE RESPONSE FACTOR 109 (ERF109) promoter. The induction of ERF109 expression enhances hydrogen peroxide (H2O2) production, which acts as a feedback loop to inhibit root growth. In addition, mutation of MRPL1 increases JA accumulation, reduces plant growth, and enhances biotic stress resistance. Overall, our findings reveal that JA plays an important role in mediating retrograde signaling under mitochondrial translational stress to balance plant growth and defense.
    Keywords:  ERF109; hydrogen peroxide; jasmonic acid; mitochondrial retrograde signaling; mitochondrial translational stress; mitochondrial unfolded protein response
    DOI:  https://doi.org/10.1016/j.xplc.2024.101133
  12. Synapse. 2024 Sep;78(5): e22309
      After seizures, the hyperactivation of extracellular signal-regulated kinases (ERK1/2) causes mitochondrial dysfunction. Through the guidance of dynamin-related protein 1 (DRP1), ERK1/2 plays a role in the pathogenesis of several illnesses. Herein, we speculate that ERK1/2 affects mitochondrial division and participates in the pathogenesis of epilepsy by regulating the activity of DRP1. LiCl-Pilocarpine was injected intraperitoneally to establish a rat model of status epilepticus (SE) for this study. Before SE induction, PD98059 and Mdivi-1 were injected intraperitoneally. The number of seizures and the latency period before the onset of the first seizure were then monitored. The analysis of Western blot was also used to measure the phosphorylated and total ERK1/2 and DRP1 protein expression levels in the rat hippocampus. In addition, immunohistochemistry revealed the distribution of ERK1/2 and DRP1 in neurons of hippocampal CA1 and CA3. Both PD98059 and Mdivi-1 reduced the susceptibility of rats to epileptic seizures, according to behavioral findings. By inhibiting ERK1/2 phosphorylation, the Western blot revealed that PD98059 indirectly reduced the phosphorylation of DRP1 at Ser616 (p-DRP1-Ser616). Eventually, the ERK1/2 and DRP1 were distributed in the cytoplasm of neurons by immunohistochemistry. Inhibition of ERK1/2 signaling pathways downregulates p-DRP1-Ser616 expression, which could inhibit DRP1-mediated excessive mitochondrial fission and then regulate the pathogenesis of epilepsy.
    Keywords:  dynamin‐related protein 1; epilepsy; extracellular regulatory protein kinase 1/2; mitochondrial fission
    DOI:  https://doi.org/10.1002/syn.22309
  13. Int J Hematol. 2024 Sep 16.
      Acute myeloid leukemia (AML) cells are highly dependent on oxidative phosphorylation and the mitochondrial dynamics regulated by fusion-related genes MFN1, MFN2, and OPA1 and fission-related genes DNM1L and MFF. An analysis of previously published gene expression datasets showed that high expression of MFF was significantly associated with poor prognosis in patients with AML. Based on this finding, we investigated the impact of mitochondrial dynamics in AML. Transduction of shRNA against fission-related genes, DNM1L and MFF, inhibited growth and increased the mitochondrial area in AML cell lines. Extracellular flux analysis showed that deletion of mitochondrial dynamic regulators reduced mitochondrial respiration without significantly affecting glycolysis, except in shDNM1L-transfected cells. Immunodeficient NOG mice transplanted with DNM1L- or MFF-knockdown AML cells survived significantly longer than controls. Treatment of AML cell lines with Mdivi-1, which inhibits the DRP1 encoded by DNM1L, inhibited cell proliferation and oxidative phosphorylation. Our results show that mitochondrial dynamics play an important role in AML, and provide novel biological insights. The inhibition of mitochondrial dynamics induces unique mitochondrial alterations, which may be explored as a potential therapeutic target in AML.
    Keywords:  AML; DNM1L; MFF; Mdivi-1; Mitochondrial dynamics
    DOI:  https://doi.org/10.1007/s12185-024-03843-8
  14. Front Pharmacol. 2024 ;15 1422686
      Vascular endothelial cells, serving as a barrier between blood and the arterial wall, play a crucial role in the early stages of the development of atherosclerosis, cardiovascular diseases (CVDs), and Alzheimer's disease (AD). Mitochondria, known as the powerhouses of the cell, are not only involved in energy production but also regulate key biological processes in vascular endothelial cells, including redox signaling, cellular aging, calcium homeostasis, angiogenesis, apoptosis, and inflammatory responses. The mitochondrial quality control (MQC) system is essential for maintaining mitochondrial homeostasis. Current research indicates that mitochondrial dysfunction is a significant driver of endothelial injury and CVDs. This article provides a comprehensive overview of the causes of endothelial injury in CVDs, ischemic stroke in cerebrovascular diseases, and AD, elucidating the roles and mechanisms of mitochondria in these conditions, and aims to develop more effective therapeutic strategies. Additionally, the article offers treatment strategies for cardiovascular and cerebrovascular diseases, including the use of clinical drugs, antioxidants, stem cell therapy, and specific polyphenols, providing new insights and methods for the clinical diagnosis and treatment of related vascular injuries to improve patient prognosis and quality of life. Future research should delve deeper into the molecular and mechanistic links between mitochondrial abnormalities and endothelial injury, and explore how to regulate mitochondrial function to prevent and treat CVDs.
    Keywords:  Alzheimer’s disease; cardiovascular diseases; endothelial cell injury; ischemic stroke; mitochondria abnormality; treatment
    DOI:  https://doi.org/10.3389/fphar.2024.1422686
  15. Genes Dis. 2024 Nov;11(6): 101074
      Stimulator of interferon genes (STING) has recently been found to play a crucial role in cardiac sterile inflammation and dysfunction. The role of stimulator of interferon genes (STING) in cardiac sterile inflammation and dysfunction has been recently discovered. This study aims to examine the involvement of STING in pathological cardiac remodeling and the mechanisms that govern the activation of the STING pathway. To investigate this, transverse aortic constriction (TAC) was performed on STING knockout mice to induce pressure overload-induced cardiac remodeling. Subsequently, cardiac function, remodeling, and inflammation levels were evaluated. The STING pathway was found to be activated in the pressure overload-stressed heart and angiotensin II (Ang II)-stimulated cardiac fibroblasts. Loss of STING expression led to a significant reduction in inflammatory responses, mitochondrial fragmentation, and oxidative stress in the heart, resulting in attenuated cardiac remodeling and dysfunction. Furthermore, the exacerbation of pressure overload-induced STING-mediated inflammation and pathological cardiac remodeling was observed when mitophagy was suppressed through the silencing of Parkin, an E3 ubiquitin ligase. Taken together, these findings indicate that STING represents a newly identified and significant molecule implicated in the process of pathological cardiac remodeling and that mitophagy is an upstream mechanism that regulates STING activation. Targeting STING may therefore provide a novel therapeutic strategy for pathological cardiac remodeling and heart failure.
    Keywords:  Cardiac remodeling; Mitochondrial autophagy; STING; Sterile inflammation; mtDNA
    DOI:  https://doi.org/10.1016/j.gendis.2023.08.003
  16. Talanta. 2024 Sep 14. pii: S0039-9140(24)01264-5. [Epub ahead of print]281 126885
      Mitochondria are crucial powerhouses and central organelles for maintaining normal physiological activities in eukaryotic cells. The use of highly specific optical biosensors to monitor mitochondrial autophagy (mitophagy) is an important way for detecting mitochondrial abnormalities. Herein, we report a pH responsive G-quadruplex (G4) structure folded by the oligonucleotide named P24. P24 is composed of four GGCCTG repeating units, and the high guanine content allows it to form an antiparallel G4 topology at pH 4.5 (lysosomal pH). However, when pH increases to around 7.4 (mitochondrial pH), P24 further transforms into a double-stranded structure. Unlike most oligonucleotides that enter lysosomes, P24 highly targets mitochondria in live cells. These characteristics enable P24 to construct a pH responsive optical biosensor by linking a pair of fluorescence resonance energy transfer (FRET) fluorophores. The P24 based biosensor demonstrates reliable applications in detecting mitophagy in live cells.
    Keywords:  Autophagy; Biosensor; G-quadruplex; Mitochondrion; pH responsive
    DOI:  https://doi.org/10.1016/j.talanta.2024.126885
  17. Sci Total Environ. 2024 Sep 17. pii: S0048-9697(24)06507-0. [Epub ahead of print] 176351
      Phthalates (PAEs), especially di (2-ethylhexyl) phthalate (DEHP), are generally considered to have adverse impact on nervous system. The residue of DEHP in the environment has gradually become a widely concerned environmental problem due to its widespread use in plastic items. Lycopene (LYC) as the readily available natural antioxidant is considered to have the potential to alleviate exogenous poisons-induced nerve damage. However, there is currently a lack of strategies to alleviate the neurotoxicity caused by DEHP, and it is also unknown whether LYC can alleviate the neurotoxicity caused by DEHP. The experiment demonstrated that LYC had the potential to mitigate DEHP-induced mitochondrial damage in cerebellum. DEHP induced the disorder of Ca2+ transport in cerebellum, thereby resulting in the imbalance of protein homeostasis. Such disruption in protein homeostasis further results in the overactivation of mitochondrial unfolded protein response (UPRmt) and mitochondrial injury. Mechanistically, LYC could alleviate the imbalance of calcium homeostasis and protein homeostasis induced by DEHP via regulating inositol 1, 4, 5-trisphosphate receptor type1 (IP3R1) and sarco/endoplasmic reticulum Ca (2+)-ATPase 2 (SERCA2), further alleviating mitochondrial damage in cerebellum. Subsequently, the present study suggested the mechanism of cerebellar injury induced by DEHP, and provided a novel approach to treating DEHP-induced neurotoxicity.
    Keywords:  Calcium homeostasis; Cerebellum; DEHP; Lycopene; Mitochondrial damage
    DOI:  https://doi.org/10.1016/j.scitotenv.2024.176351
  18. Mol Neurobiol. 2024 Sep 18.
      Hearing loss is one of the most common human diseases, seriously affecting everyday lives. Mitochondria, as the energy metabolism center in cells, are also involved in regulating active oxygen metabolism and mediating the occurrence of inflammation and apoptosis. Mitochondrial defects are closely related to hearing diseases. Studies have shown that mitochondrial DNA mutations are one of the causes of hereditary hearing loss. In addition, changes in mitochondrial homeostasis are directly related to noise-induced hearing loss and presbycusis. This review mainly summarizes and discusses the effects of mitochondrial dysfunction and mitophagy on hearing loss. Subsequently, we introduce the recent research progress of targeted mitochondria therapy in the hearing system.
    Keywords:  Hair cell; Inner ear; Mitochondrial; Mitophagy; Oxidative stress; mtDNA
    DOI:  https://doi.org/10.1007/s12035-024-04470-4
  19. JCI Insight. 2024 Sep 17. pii: e178645. [Epub ahead of print]
      BACKGROUND: Mitochondrial diseases belong to the group of inborn errors of metabolism (IEM), with a prevalence of 1:2,000-1:5,000. They are the most common form of IEM, but despite advances in next-generation sequencing technologies, almost half of the patients are left genetically undiagnosed.METHODS: We investigated a cohort of 61 patients with defined mitochondrial disease to improve diagnostics, identify biomarkers, and correlate metabolic pathways to specific disease groups. Clinical presentations were structured using human phenotype ontology terms, and mass spectrometry-based proteomics was performed on primary fibroblasts. Additionally, we integrated six patients carrying variants of uncertain significance (VUS) to test proteomics as a diagnostic expansion.
    RESULTS: Proteomic profiles from patient samples could be classified according to their biochemical and genetic characteristics, with the expression of five proteins (GPX4, MORF4L1, MOXD1, MSRA and TMED9) correlating with the disease cohort, and thus, acting as putative biomarkers. Pathway analysis showed a deregulation of inflammatory and mitochondrial stress responses. This included the upregulation of glycosphingolipid metabolism and mitochondrial protein import, as well as the downregulation of arachidonic acid metabolism. Furthermore, we could assign pathogenicity to a VUS in MRPS23 by demonstrating the loss of associated mitochondrial ribosome subunits.
    CONCLUSION: We established mass spectrometry-based proteomics on patient fibroblasts as a viable and versatile tool for diagnosing patients with mitochondrial disease.
    FUNDING: The NovoNordisk Foundation, Knut and Alice Wallenberg Foundation, Wellcome Centre for Mitochondrial Research, UK Medical Research Council, and the UK NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children.
    Keywords:  Metabolism; Mitochondria; Molecular diagnosis; Proteomics
    DOI:  https://doi.org/10.1172/jci.insight.178645
  20. Structure. 2024 Sep 12. pii: S0969-2126(24)00334-4. [Epub ahead of print]
      Outer mitochondrial membrane fusion, a vital cellular process, is mediated by mitofusins. However, the underlying molecular mechanism remains elusive. We have performed extensive multiscale molecular dynamics simulations to predict a model of the transmembrane (TM) domain of the yeast mitofusin Fzo1. Coarse-grained simulations of the two TM domain helices, TM1 and TM2, reveal a stable interface, which is controlled by the charge status of residue Lys716. Atomistic replica-exchange simulations further tune our model, which is confirmed by a remarkable agreement with an independent AlphaFold2 (AF2) prediction of Fzo1 in complex with its fusion partner Ugo1. Furthermore, the presence of the TM domain destabilizes the membrane, even more if Lys716 is charged, which can be an asset for initiating fusion. The functional role of Lys716 was confirmed with yeast experiments, which show that mutating Lys716 to a hydrophobic residue prevents mitochondrial fusion.
    Keywords:  Fzo1; Lys716; mitofusin; molecular modeling; outer mitochondrial membrane fusion; transmembrane domain
    DOI:  https://doi.org/10.1016/j.str.2024.08.017
  21. Adv Exp Med Biol. 2024 ;1461 229-243
      There are at least two types of adipose tissues in the body, defined as brown adipose tissues (BATs) and white adipose tissues (WATs). These tissues comprise brown and white adipocytes, respectively. The adipocytes are commonly endowed with mitochondria, but they have diverse characteristics and roles. Brown adipocytes have abundant mitochondria that contribute to the β-oxidation of fatty acids to produce chemical energy and the production of heat via uncoupling of the mitochondrial membrane potential from ATP synthesis. Alternatively, white adipocytes have fewer mitochondria that contribute to the generation of free fatty acids via lipogenesis by providing key intermediates. Besides the described types of adipocytes, brown-like adipocytes, termed beige adipocytes, are developed in WAT depots during cold exposure. Beige adipocytes also contribute to thermogenesis. Notably, beige adipocytes may transform into white-like adipocytes after the withdrawal of cold exposure. This process is marked by the elimination of mitochondria through the activation of mitochondria autophagy (mitophagy). This review aims to describe the mitophagy that occurs during the beige-to-white transition and discuss recent insights into the molecular mechanisms of this transformation. Additionally, we describe the mitophagy monitoring strategy in adipose tissues using three independent reporter systems and discuss the availabilities and limitations of the method.
    Keywords:  Autophagy; Beige adipocytes; Beige-to-white transition; Cold exposure; Mitochondria; Mitophagy; Thermogenesis
    DOI:  https://doi.org/10.1007/978-981-97-4584-5_16
  22. Sci Rep. 2024 09 17. 14(1): 21648
      Helicobacter pylori (H. pylori) is one of the most common bacterial infections in the world, and its key virulence component CagA is the leading cause of gastric cancer. Mitophagy is a form of selective autophagy that eliminates damaged mitochondria and is essential for some viruses and bacteria to evade the immune system. However, the mechanisms by which CagA mediates H. pylori-induced mitophagy and NLRP3 inflammasome activation remain elusive. In this study, we reported that H. pylori primarily uses its CagA to induce mitochondrial oxidative damage, mitochondrial dysfunction, dynamic imbalance, and to block autophagic flux. Inhibition of mitophagy led to an increase in NLRP3 inflammasome activation and apoptosis and a decrease in the viability of H. pylori-infected cells. Our findings suggested that H. pylori induces mitochondrial dysfunction and mitophagy primarily via CagA. It reduces NLRP3 inflammasome activation to evade host immune surveillance and increases the survival and viability of infected cells, potentially leading to gastric cancer initiation and development. Our findings provide new insights into the pathogenesis of H. pylori-induced gastric cancer, and inhibition of mitophagy may be one of the novel techniques for the prevention and treatment of this disease.
    Keywords:   Helicobacter pylori ; Autophagy flux; Gastric cancer; Mitophagy; NLRP3 inflammasome; Survival and viability
    DOI:  https://doi.org/10.1038/s41598-024-72534-5
  23. Front Physiol. 2024 ;15 1420276
      Skeletal muscle hypertrophy is generally associated with a fast-to-slow phenotypic adaptation in both human and rodent models. Paradoxically, this phenotypic shift is not paralleled by a concomitant increase in mitochondrial content and aerobic markers that would be expected to accompany a slow muscle phenotype. To understand the temporal response of the mitochondrial life cycle (i.e., biogenesis, oxidative phosphorylation, fission/fusion, and mitophagy/autophagy) to hypertrophic stimuli, in this study, we used the functional overload (FO) model in adult female rats and examined the plantaris muscle responses at 1 and 10 weeks. As expected, the absolute plantaris muscle mass increased by ∼12 and 26% at 1 and 10 weeks following the FO procedure, respectively. Myosin heavy-chain isoform types I and IIa significantly increased by 116% and 17%, respectively, in 10-week FO plantaris muscles. Although there was a general increase in protein markers associated with mitochondrial biogenesis in acute FO muscles, this response was unexpectedly sustained under 10-week FO conditions after muscle hypertrophy begins to plateau. Furthermore, the early increase in mito/autophagy markers observed under acute FO conditions was normalized by 10 weeks, suggesting a cellular environment favoring mitochondrial biogenesis to accommodate the aerobic demands of the plantaris muscle. We also observed a significant increase in the expression of mitochondrial-, but not nuclear-, encoded oxidative phosphorylation (OXPHOS) proteins and peptides (i.e., humanin and MOTS-c) under chronic, but not acute, FO conditions. Taken together, the temporal response of markers related to the mitochondrial life cycle indicates a pattern of promoting biogenesis and mitochondrial protein expression to support the energy demands and/or enhanced neural recruitment of chronically overloaded skeletal muscle.
    Keywords:  MOTS-c; autophagy; biogenesis; mitophagy; myosin heavy chain; oxidative phosphorylation
    DOI:  https://doi.org/10.3389/fphys.2024.1420276
  24. Stem Cell Res Ther. 2024 Sep 15. 15(1): 305
      BACKGROUND: Fibrosis with unrelieved chronic inflammation is an important pathological change in keloids. Mitochondrial autophagy plays a crucial role in reducing inflammation and inhibiting fibrosis. Adipose stem cell-derived exosomes, a product of adipose stem cell paracrine secretion, have pharmacological effects, such as anti-inflammatory and antiapoptotic effects, and mediate autophagy. Therefore, this study aims to investigate the function and mechanism of adipose stem cell exosomes in the treatment of keloids.METHOD: We isolated adipose stem cell exosomes under normoxic and hypoxic condition to detect their effects on keloid fibroblast proliferation, migration, and collagen synthesis. Meanwhile, 740YPDGFR (PI3K/AKT activator) was applied to detect the changes in autophagic flow levels and mitochondrial morphology and function in keloid fibroblasts. We constructed a human keloid mouse model by transplanting human keloid tissues into six-week-old (20-22 g; female) BALB/c nude mice, meanwhile, we applied adipose stem cell exosomes to treat the mouse model and observed the retention and effect of ADSC exosomes in vivo.
    RESULTS: ADSC exosomes can inhibit the PI3K/AKT/mTOR signaling pathway. The exosomes of ADSCs decreased the inflammatory level of KFs, enhanced the interaction between P62 and LC3, and restored the mitochondrial membrane potential. In the human keloid mouse model, ADSC exosomes can exist stably, promote mitochondrial autophagy in keloid tissue, improve mitochondrial morphology, reduce inflammatory reaction and fibrosis. Meanwhile, At the same time, the exosomes derived from hypoxic adipose stem cells have played a more effective role in both in vitro and in vivo experiments.
    CONCLUSIONS: Adipose stem cell exosomes inhibited the PI3K/AKT/mTOR pathway, activated mitochondrial autophagy, and alleviated keloid scars.
    Keywords:  ADSCs; Exosomes; Keloids; Mitophagy; PI3K/AKT/mTOR
    DOI:  https://doi.org/10.1186/s13287-024-03928-5
  25. Exp Neurol. 2024 Sep 13. pii: S0014-4886(24)00276-0. [Epub ahead of print]382 114950
      Intracerebral hemorrhage (ICH) is a severe disease that often leads to disability and death. Neuroinflammatory response is a key causative factor of early secondary brain injury after ICH. AIM2 is a DNA-sensing protein that recognizes cytosolic double-stranded DNA and take a significant part in neuroinflammation. Mitochondrial DNA participates in the translation of proteins such as the respiratory chain in the mitochondria. Whether mtDNA is involved in forming AIM2 inflammasome after ICH remains unclear. We used mice to construct ICH model in vivo and we used BV2 microglial cells treated with oxyhemoglobin to simulate ICH in vitro. Following lentiviral transfection to overexpress AIM2 antagonist P202, a notable decrease was observed in the levels of AIM2 inflammasome-associated proteins, leading to a reduction in dead neurons surrounding the hematoma and an enhancement in long-term and short-term behavior of neurological deficits. We further explored whether mtDNA took part in the AIM2 activation after ICH. The cytosolic mtDNA level was down-regulated by the mitochondrial division protector Mdivi-1 and up-regulated by transfection of mtDNA into cytoplasm. We found the expression level of AIM2 inflammasome-related proteins and inflammatory cytokines release were regulated by the cytosolic mtDNA level. In conclusion, after ICH, the mtDNA content in the cytoplasm of microglia around the hematoma rises, causing AIM2 inflammation leading to neuronal apoptosis, which leads to neurological deficits in mice. On the other hand, P202 was able to block inflammatory vesicle activation and improve neurological function by preventing the interaction between AIM2 protein and mitochondrial DNA.
    Keywords:  Inflammasome; Intracerebral hemorrhage; Mitochondrial DNA; Neuroinflammation; Secondary brain injury
    DOI:  https://doi.org/10.1016/j.expneurol.2024.114950
  26. Front Endocrinol (Lausanne). 2024 ;15 1432819
      Maintaining a well-functioning mitochondrial network through the mitochondria quality control (MQC) mechanisms, including biogenesis, dynamics and mitophagy, is crucial for overall health. Mitochondrial dysfunction caused by oxidative stress and further exacerbated by impaired quality control can trigger inflammation through the release of the damage-associated molecular patterns (mtDAMPs). mtDAMPs act by stimulating the cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) pathway. Recently, aberrant signalling of the cGAS-STING axis has been recognised to be closely associated with several sterile inflammatory diseases (e.g. non-alcoholic fatty liver disease, obesity). This may fit the pathophysiology of hypothyroidism, an endocrine disorder characterised by the reduction of thyroid hormone production associated with impaired metabolic fluxes, oxidative balance and inflammatory status. Both 3,5,3'-triiodo-L-tyronine (T3) and its derivative 3,5-diiodo-L-thyronine (3,5-T2), are known to mitigate processes targeting mitochondria, albeit the underlying mechanisms are not yet fully understood. Therefore, we used a chemically induced hypothyroidism rat model to investigate the effect of 3,5-T2 or T3 administration on inflammation-related factors (inflammatory cytokines, hepatic cGAS-STING pathway), oxidative stress, antioxidant defence enzymes, mitochondrial DNA (mtDNA) damage, release and repair, and the MQC system in the liver. Hypothyroid rats showed: i) increased oxidative stress, ii) accumulation of mtDNA damage, iii) high levels of circulating cytokines, iv) hepatic activation of cGAS-STING pathways and v) impairment of MQC mechanisms and autophagy. Both iodothyronines restored oxidative balance by enhancing antioxidant defence, preventing mtDNA damage through the activation of mtDNA repair mechanisms (OGG1, APE1, and POLγ) and promoting autophagy progression. Concerning MQC, both iodothyronines stimulated mitophagy and dynamics, with 3,5-T2 activating fusion and T3 modulating both fusion and fission processes. Moreover, only T3 enhanced mitochondrial biogenesis. Notably, 3,5-T2, but not T3, reversed the hypothyroidism-induced activation of the cGAS-STING inflammatory cascade. In addition, it is noteworthy that 3,5-T2 seems more effective than T3 in reducing circulating pro-inflammatory cytokines IL-6 and IL-1B and in stimulating the release of IL-10, a known anti-inflammatory cytokine. These findings reveal novel molecular mechanisms of hepatic signalling pathways involved in hypothyroidism, which could be targeted by natural iodothyronines, particularly 3,5-T2, paving the way for the development of new treatment strategies for inflammatory diseases.
    Keywords:  hepatic dysfunction; hypothyroidism; inflammation; iodothyronines; mitochondrial quality control; mtDAMPs; oxidative stress
    DOI:  https://doi.org/10.3389/fendo.2024.1432819
  27. J Ovarian Res. 2024 Sep 17. 17(1): 188
      OBJECTIVE: Diminished ovarian reserve (DOR) encompasses both reproductive and endocrine disorders, resulting in a decline in female fertility. This paper explored the mechanism of Yangjing Zhongyu Decoction (YJZYD) regulating mitochondrial dynamics of ovarian granulosa cells (GCs) to improve DOR.METHODS: DOR patients were treated with YJZYD, with ovarian volume (OV), antral follicle count (AFC), and endometrial thickness (EMT) detected. C57BL/6 female mice were treated by cyclophosphamide (Cy) intraperitoneal injection and YJZYD solution daily gavage, with serum anti-Mullerian hormone (AMH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) levels determined. Ovarian GCs (KGN) were interfered with 4-Hydroperoxy-Cyclophosphamide (4-HC) and treated with the MAPK/ERK pathway inhibitor or activator.
    RESULTS: DOR patients showed increased levels of serum AMH, E2, OV, AFC and EMT, while reduced FSH and LH levels after YJZYD treatment. After Cy induction, DOR mice exhibited irregular estrous cycles, diminished serum AMH and E2 levels, elevated FSH and LH levels, reduced follicle number and atresia follicle number, disorderly arranged GCs, and severe interstitial fibrosis. After 4-HC treatment, KGN proliferation and Bcl-2, MFN1, and MFN2 were suppressed, while apoptotic rate, Bax, Cleaved-caspase-3, and p-Drp1 (Ser616) levels, and mitochondrial fission and quantity increased. YJZYD promoted 4-HC-treated KGN proliferation, boosted mitochondrial fusion, and inhibited apoptosis and mitochondrial fission via the MAPK/ERK pathway.
    CONCLUSION: YJZYD promoted ovarian GC proliferation and mitochondrial fusion, suppressed cell apoptosis and mitochondrial fission, and effectively improved DOR in mice by activating the MAPK/ERK pathway, providing a theoretical basis for the clinical application value of YJZYD in DOR treatment.
    Keywords:  Apoptosis; Diminished ovarian reserve; Mitochondrial dynamics; Ovarian granulosa cells; Proliferation; YangJing zhongyu decoction
    DOI:  https://doi.org/10.1186/s13048-024-01506-0
  28. PeerJ. 2024 ;12 e18062
      Acute lung injury (ALI) is one of the most deadly and prevalent diseases in the intensive care unit. Ferroptosis and mitophagy are pathological mechanisms of ALI. Ferroptosis aggravates ALI, whereas mitophagy regulates ALI. Ferroptosis and mitophagy are both closely related to reactive oxygen species (ROS). Mitophagy can regulate ferroptosis, but the specific relationship between ferroptosis and mitophagy is still unclear. This study summarizes previous research findings on ferroptosis and mitophagy, revealing their involvement in ALI. Examining the functions of mTOR and NLPR3 helps clarify the connection between ferroptosis and mitophagy in ALI, with the goal of establishing a theoretical foundation for potential therapeutic approaches in the future management of ALI.
    Keywords:  Acute lung injury; Ferroptosis; Mechanism; Mitochondria; Mitophagy; Relationship
    DOI:  https://doi.org/10.7717/peerj.18062
  29. Fish Shellfish Immunol. 2024 Sep 13. pii: S1050-4648(24)00552-7. [Epub ahead of print] 109907
      Fluorene-9-bisphenol (BHPF), as an alternative to bisphenol A, is now increasingly used in plastic products. The accumulation of BHPF in the water environment has posed potential safety risks to aquatic organisms. Unfortunately, the toxicity of BHPF on the physiological metabolism of aquatic animals remains unclear, especially on the molecular mechanisms of BHPF kidney toxicity and antagonizing BHPF toxicity. Quercetin (QCT), a naturally occurring flavonoid, has been reported to mitigate the toxic effects on aquatic organisms induced by a variety of environmental contaminants. It is unclear whether QCT can be a candidate for mitigating BHPF toxicity. In this study, we investigated the protective effect of QCT on BHPF-induced apoptosis and elucidated the possible mechanism of the protective effect mediated by QCT. We treated epithelioma papulosum cyprini cells (EPCs) with 20 μM of BHPF and/or 20 μM of QCT, and the results showed that BHPF significantly increased the release of reactive oxygen species (ROS) from EPCs, decreased the expression of SIRT3, and initiated endogenous apoptosis. Molecular docking provides evidence for the interaction of QCT and SIRT3. Our intervention with Honokiol (HKL) showed that QCT or HKL treatment significantly attenuated BHPF-induced mitochondrial dysfunction and mitochondrial apoptosis (mtApoptosis) in EPCs, and activated mitophagy, restoring autophagy flux. To further investigate the specific mechanism of the protective effect of QCT, we intervened with Cyclosporin A (CsA), and our results suggest that QCT activation of SIRT3-promoted regulation of mitophagy may be a therapeutic strategy to attenuate the toxic effects of BHPF on EPCs. In conclusion, our findings suggest that BHPF induces oxidative damage and mtApoptosis in EPCs and that QCT activates mitophagy and improves autophagic flux through activation of SIRT3, thereby alleviating apoptosis mediated by mitochondrial dysfunction in EPCs. Our study provides a theoretical basis for reassessing the safety of BHPF for aquatic organisms and reveals a novel detoxification mechanism against the toxic effects of BHPF.
    Keywords:  Apoptosis; BHPF; EPCs; Mitophagy; QCT; SIRT3
    DOI:  https://doi.org/10.1016/j.fsi.2024.109907
  30. J Biol Chem. 2024 Sep 12. pii: S0021-9258(24)02274-9. [Epub ahead of print] 107773
      Parkinson's disease (PD) is a multi-factorial neurodegenerative disorder. Loss or degeneration of the dopaminergic neurons in the substantia nigra and development of Lewy Bodies in dopaminergic neurons were the defining pathologic changes. MiRNAs fine-tune the protein levels by post-transcriptional gene regulation. MiR-7019-3p is encoded within the 5th intron of PD associated protein PINK1. In present study, we firstly demonstrated miR-7019-3p expression is significantly up regulated in PD mice model and neuron cell models, miR-7019-3p mainly existed in mitochondria, miR-7019-3p could regulate the structure and function of mitochondria in neuronal cells. We predicted and verified that mitochondria associated protein OPA1 and 12s rRNA, 16s rRNA and polycistronic RNA are target genes of miR-7019-3p. Finally, we proved that SP1 protein could independently regulate the expression of miR-7019-3p at the upstream. The evidences in the study suggest the role miR-7019-3p in the regulation of mitochondrial structure and function, and this kind of regulation could be implemented or promoted through the pathway of SP1-miR-7019-3p-OPA1/12s rRNA, 16s rRNA and polycistronic RNA. Our results have suggested a promising and potential therapeutic target for reversing mitochondria dysregulation in neuronal cells during Parkinson's disease process.
    DOI:  https://doi.org/10.1016/j.jbc.2024.107773
  31. J Affect Disord. 2024 Sep 14. pii: S0165-0327(24)01525-8. [Epub ahead of print]368 160-171
      BACKGROUNDS: Major depressive disorder (MDD) is a pervasive mental and mood disorder with complicated and heterogeneous etiology. Mitophagy, a selective autophagy of cells, specifically eliminates dysfunctional mitochondria. The mitochondria dysfunction in the astrocytes is regarded as a critical pathogenetic mechanism of MDD. However, studies on the mitophagy of astrocytes in MDD are scarce. To explore the impact of mitophagy on the astrocytes, we used bioinformatic methods to analyze the correlation between astrocyte-related genes and mitophagy-related genes in MDD.METHODS: The microarray dataset of MDD was downloaded from the Gene Expression Omnibus database and identified astrocyte- and mitophagy-related differentially expressed genes (AMRDEGs). We used three machine learning algorithms to identify hub AMRDEGs and constructed a diagnostic prediction model. Also, we analyzed transcription factor-gene and gene-microRNA interaction networks, and the immune infiltration in MDD and healthy controls. Besides, we performed consensus clustering analysis, immune infiltration analysis, and gene set variation analysis of MDD samples.
    RESULTS: The present research identified 3 hub AMRDEGs (GRN, NDUFAF4, and SNCA), and a good diagnostic model with potential clinical applications was constructed and validated. Besides, we identified 6 transcription factors and 14 microRNAs. The immune infiltration analysis showed that MDD was closely related to immune cells. Gene set variant analysis showed that MDD was related to immune and mitochondrial metabolism and inflammatory signaling pathways.
    CONCLUSIONS: We identified 3 hub AMRDEGs, new biomarkers for treating and diagnosing MDD and associated with immuno-inflammation. Our research provides new insights into the early diagnosis and treatment of MDD.
    Keywords:  Astrocyte; Immune infiltration; Machine learning; Major depressive disorder; Mitophagy
    DOI:  https://doi.org/10.1016/j.jad.2024.09.032
  32. Heliyon. 2024 Sep 15. 10(17): e36470
      Alzheimer's disease (AD) is a neurological disease with memory loss and cognitive decline, which affects a large proportion of the aging population. Regrettably, there are no drug to reverse or cure AD and drug development for the primary theory of amyloid beta deposition has mostly failed. Therefore, there is an urgent need to investigate novel strategies for preventing AD. Recent studies demonstrate that imbalance of mitochondrial homeostasis is a driver in Aβ accumulation, which can lead to the occurrence and deterioration of cognitive impairment in AD patients. This suggests that regulating neuronal mitochondrial homeostasis may be a new strategy for AD. We summarize the importance of mitochondrial homeostasis in AD neuron and its regulatory mechanisms in this review. In addition, we summarize the results of studies indicating mitochondrial dysfunction in AD subjects, including impaired mitochondrial energy production, oxidative stress, imbalance of mitochondrial protein homeostasis, imbalance of fusion and fission, imbalance of neuronal mitochondrial biogenesis and autophagy, and altered mitochondrial motility, in hope of providing possible therapeutic approaches for AD.
    Keywords:  Alzheimer's disease; Mitochondrial dysfunction; Mitochondrial homeostasis; Neuronal apoptosis
    DOI:  https://doi.org/10.1016/j.heliyon.2024.e36470
  33. iScience. 2024 Sep 20. 27(9): 110741
      Osteoarthritis (OA) is a progressive degenerative joint disease, and the underlying molecular mechanisms of OA remain poorly understood. This study aimed to elucidate the relationship between mitochondrial autophagy and OA by identifying key regulatory genes and their biological functions. Utilizing bioinformatics analyses of RNA expression profiles from the GSE55235 dataset, we identified 2,136 differentially expressed genes, leading to the discovery of hub genes associated with mitochondrial autophagy and OA. Gene set enrichment analysis (GSEA) revealed their involvement in critical pathways, highlighting their potential roles in OA pathogenesis. Furthermore, our study explored the immunological landscape of OA, identifying distinct immune cell infiltration patterns that contribute to the disease's inflammatory profile. We also evaluated the therapeutic potential of drugs targeting these hub genes, suggesting potential approaches for OA treatment. Collectively, this study advances our knowledge of mitochondrial autophagy in OA and proposes promising biomarkers and therapeutic targets.
    Keywords:  Bioinformatics; Cell biology; Physiology; Transcriptomics
    DOI:  https://doi.org/10.1016/j.isci.2024.110741
  34. BMC Chem. 2024 Sep 18. 18(1): 174
      Heterocyclic compounds play a crucial role in the drug discovery process and development due to their significant presence and importance. Here, we report a comprehensive analysis of α-aminophosphonates containing pyridine (3a-g), prepared according to a clear-cut, uncomplicated procedure. The phosphonates are thoroughly characterized using various methods, such as elemental analysis, mass spectrometry, proton and carbon NMR, and FT-IR. The molecular docking interactions between the phosphonate and DRP-1 target protein observed that compound 3d had the top-ranked binding energy towards DRP-1 with a value equal to - 9.54 kcal/mol and this theoretically proves its inhibitory efficacy against DRP-1 arbitrated mitochondrial fission. Besides, the anticancer characteristics of compound 3d showed the best IC50 against HepG-2, MCF-7, and Caco-2 which confirmed our results towards suppressing DRP-1 protein (in-silico), and it elucidated no cytotoxic effects against human normal cell line (WI-38). Further, its pharmacokinetics were observed theoretically using ADMET. Moreover,compound 3d investigated the most potent antimicrobial ability against two pathological fungal strains, A. flavus and C. albicans, and four bacterial strains, E. coli, B. subtillis, S. aureus, and P. aregeunosa. Additionally, compound 3d clarified a powerful antioxidant scavenging activity against DPPH and ABTS free radicals (in-vitro). Furthermore, Density functional theory (DFT) was used to study the molecular structures of the synthesized compounds 3a-g, utilizing 6-311++G(d,p) as the basis set and to learn more about the molecules' reactive sites, the energies of the molecular electrostatic potential (MEP), the lowest unoccupied molecular orbital (LUMO), and the highest occupied molecular orbital (HOMO) were observed. Theoretically, FT-IR and Nuclear magnetic resonance (NMR) measurements are calculated for every compound under investigation to show how theory and experiment relate. It was found that there was an excellent agreement between the theoretical and experimental data. Conclusively, all novel synthesized phosphonates could be used as pharmaceutical agents against pathogenic microbial strains and as anticancer candidates by inhibiting DRP-1-mediated mitochondrial mitophagy.
    Keywords:  Antimicrobial; Dynamin-related protein 1; Kabachnic-fields reaction; Mitochondrial fission; Pyridine; α-Aminophosphonates
    DOI:  https://doi.org/10.1186/s13065-024-01268-2
  35. Heliyon. 2024 Sep 15. 10(17): e37378
      Background: Mitophagy selectively eliminates potentially cytotoxic and damaged mitochondria and effectively prevents excessive cytotoxicity from damaged mitochondria, thereby attenuating inflammatory and oxidative responses. However, the potential role of mitophagy in intervertebral disc degeneration remains to be elucidated.Methods: The GSVA method, two machine learning methods (SVM-RFE algorithm and random forest), the CIBERSORT and MCPcounter methods, as well as the consensus clustering method and the WGCNA algorithm were used to analyze the involvement of mitophagy in intervertebral disc degeneration, the diagnostic value of mitophagy-associated genes in intervertebral disc degeneration, and the infiltration of immune cells, and identify the gene modules that were closely related to mitophagy. Single-cell analysis was used to detect mitophagy scores and TOMM22 expression, and pseudo-temporal analysis was used to explore the function of TOMM22 in nucleus pulposus cells. In addition, TOMM22 expression was compared between human normal and degenerated intervertebral disc tissue samples by immunohistochemistry and PCR.
    Results: This study identified that the mitophagy pathway score was elevated in intervertebral disc degeneration compared with the normal condition. A strong link was present between mitophagy genes and immune cells, which may be used to typify intervertebral disc degeneration. The single-cell level showed that mitophagy-associated gene TOMM22 was highly expressed in medullary cells of the disease group. Further investigations indicated the upregulation of TOMM22 expression in late-stage nucleus pulposus cells and its role in cellular communication. In addition, human intervertebral disc tissue samples established that TOMM22 levels were higher in disc degeneration samples than in normal samples.
    Conclusions: Our findings revealed that mitophagy may be used in the diagnosis of intervertebral disc degeneration and its typing, and TOMM22 is a molecule in this regard and may act as a potential diagnostic marker in intervertebral disc degeneration.
    Keywords:  Human tissue sample validation; IDD (intervertebral disc degeneration); Machine learning; Mitophagy; Single-cell analysis
    DOI:  https://doi.org/10.1016/j.heliyon.2024.e37378
  36. Naunyn Schmiedebergs Arch Pharmacol. 2024 Sep 16.
      Carbon tetrachloride (CCl4)-provoked acute liver injury (ALI) is typified by intensified apoptotic, inflammatory, and oxidative changes besides mitochondrial dysfunction. Sinomenine is an active constituent in the medicinal plant Sinomenium acutum. The main objective of this study was to determine sinomenine-induced hepatoprotection following CCl4 challenge with an emphasis on unraveling the contribution of mitochondrial biogenesis-related factors. To induce ALI, CCl4 was injected i.p. and sinomenine was orally administered at 10, 25, and 50 mg/kg. Serum factors in relation to liver dysfunction were measured in addition to hepatic analysis of apoptotic, mitochondrial biogenesis, oxidative, and inflammatory parameters. Sinomenine pretreatment significantly lowered ALT and AST, MDA, IL-6, apoptosis intensity, and TNF-α and restored mitochondrial biogenesis besides enhancement of SOD, sirtuin-1, and AMPK. Sinomenine also conferred hepatoprotective impact, as was apparent by lower pathologic changes. These effects were accompanied by changes in gene expression for AMPK/sirtuin-1/PGC-1α/PPARγ. The current study showed sinomenine hepatoprotective impact in CCl4-induced ALI that is associated with its regulation of mitochondrial biogenesis and parallel enhancement of AMPK/sirtuin-1.
    Keywords:  AMP-activated protein kinase; Carbon tetrachloride; Liver injury; Mitochondrial biogenesis; Sinomenine; Sirtuin-1
    DOI:  https://doi.org/10.1007/s00210-024-03448-2
  37. Toxicol Lett. 2024 Sep 14. pii: S0378-4274(24)02031-9. [Epub ahead of print]
      Mitochondrial abnormalities in lung epithelial cells have been associated with chronic obstructive pulmonary disease (COPD) pathogenesis. Cigarette smoke (CS) can induce alterations in the molecular pathways regulating mitochondrial function in lung epithelial cells. Recently, heated tobacco products (HTPs) have been marketed as harm reduction products compared with regular cigarettes. However, the effects of HTP emissions on human alveolar epithelial cell metabolism and on the molecular mechanisms regulating mitochondrial content and function are unclear. In this study, human alveolar epithelial cells (A549) were exposed to cigarette or HTP emissions in the form of liquid extracts. The oxygen consumption rate of differently exposed cells was measured, and mRNA and protein abundancy of key molecules involved in the molecular regulation of mitochondrial metabolism were assessed. Furthermore, we used a mitophagy detection probe to visualize mitochondrial breakdown over time in response to the extracts. Both types of extracts induced increases in basal-, maximal- and spare respiratory capacity, as well as in cellular ATP production. Moreover, we observed alterations in the abundancy of regulatory molecules controlling mitochondrial biogenesis and mitophagy. Mitophagy was not significantly altered in response to the extracts, as no significant differences compared to vehicle-treated cells were observed.
    Keywords:  Chronic obstructive pulmonary disease; cigarette smoke; heated tobacco products; human alveolar epithelial cells; mitochondrial biogenesis; mitophagy; oxygen consumption rate
    DOI:  https://doi.org/10.1016/j.toxlet.2024.09.004
  38. Redox Biol. 2024 Sep 12. pii: S2213-2317(24)00329-X. [Epub ahead of print]76 103351
      Diastolic dysfunction is increasingly common in preterm infants exposed to supplemental oxygen (hyperoxia). Previous studies in neonatal mice showed hyperoxia suppresses fatty acid synthesis genes required for proliferation and survival of atrial cardiomyocytes. The loss of atrial cardiomyocytes creates a hypoplastic left atrium that inappropriately fills the left ventricle during diastole. Here, we show that hyperoxia stimulates adenosine monophosphate-activated kinase (AMPK) and peroxisome proliferator activated receptor-gamma (PPARγ) signaling in atrial cardiomyocytes. While both pathways can regulate lipid homeostasis, PPARγ was the primary pathway by which hyperoxia inhibits fatty acid gene expression and inhibits proliferation of mouse atrial HL-1 cells. It also enhanced the toxicity of hyperoxia by increasing expression of activating transcription factor (ATF) 5 and other mitochondrial stress response genes. Silencing PPARγ signaling restored proliferation and survival of HL-1 cells as well as atrial cardiomyocytes in neonatal mice exposed to hyperoxia. Our findings reveal PPARγ enhances the toxicity of hyperoxia on atrial cardiomyocytes, thus suggesting inhibitors of PPARγ signaling may prevent diastolic dysfunction in preterm infants.
    Keywords:  Cardiomyocytes; Hyperoxia; Mitochondria; Peroxisome proliferator activated receptor; Reactive oxygen species
    DOI:  https://doi.org/10.1016/j.redox.2024.103351
  39. Pharmacol Res. 2024 Sep 16. pii: S1043-6618(24)00367-0. [Epub ahead of print] 107422
      Development of functional recovery therapies is critical to reduce the global impact of stroke as the leading cause of long-term disability. Our previous studies found that acute-phase protein orosomucoid (ORM) could provide an up to 6h therapeutic time window to reduce infarct volume in acute ischemic stroke by improving endothelial function. However, its role in neurons and functional recovery post-stroke remains largely unknown. Here, we showed that exogenous ORM administration with initial injection at 0.5h (early) or 12h (delayed) post-MCAO daily for consecutive 7 days significantly decreased infarct area, improved motor and cognitive functional recovery, and promoted mitochondrial biogenesis after MCAO. While neuron-specific knockout of ORM2, a dominant subtype of ORM in the brain, produced opposite effects which could be rescued by exogenous ORM. In vitro, exogenous ORM protected SH-SY5Y cells from OGD-induced damage and promoted mitochondrial biogenesis, while endogenous ORM2 deficiency worsened these processes. Mechanistically, inactivation of CCR5 or AMPK eliminated the protective effects of ORM on neuronal damage and mitochondrial biogenesis. Taken together, our findings demonstrate that ORM, mainly ORM2, is an endogenous regulator of neuronal mitochondrial biogenesis by activating CCR5/AMPK signaling pathway, and might act as a potential therapeutic target for the functional recovery post-stroke.
    Keywords:  Orosomucoid 2; functional recovery; ischemic stroke; mitochondrial biogenesis; neuroprotection
    DOI:  https://doi.org/10.1016/j.phrs.2024.107422
  40. Kidney Int Rep. 2024 Sep;9(9): 2596-2607
      Vascular calcification (VC) is a common complication of chronic kidney disease (CKD) and is closely associated with cardiovascular events. The transdifferentiation of vascular smooth muscles (VSMCs) into an osteogenic phenotype is hypothesized to be the primary cause underlying VC. However, there is currently no effective clinical treatment for VC. Growing evidence suggests that mitochondrial dysfunction accelerates the osteogenic differentiation of VSMCs and VC via multiple mechanisms. Therefore, elucidating the relationship between the osteogenic differentiation of VSMCs and mitochondrial dysfunction may assist in improving VC-related adverse clinical outcomes in patients with CKD. This review aimed to summarize the role of mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and metabolic reprogramming, as well as mitochondria-associated oxidative stress (OS) and senescence in VC in patients with CKD to offer valuable insights into the clinical treatment of VC.
    Keywords:  CKD; mitochondria; osteogenic transdifferentiation; vascular calcification; vascular smooth muscle cell
    DOI:  https://doi.org/10.1016/j.ekir.2024.05.005
  41. Free Radic Biol Med. 2024 Sep 16. pii: S0891-5849(24)00654-3. [Epub ahead of print]224 554-563
      OBJECTIVE: To investigate the protective effect of lanthanum chloride on kidney injury in chronic kidney disease and its mechanism.METHODS: 1. Patients with CKD stage 2-5 were selected to analyze the effect of lanthanum-containing preparations on CKD. 2. Sixty healthy male Wistar rats were randomly divided into control group, model group, lanthanum chloride groups (0.03 ng/kg, 0.1 ng/kg, 0.3 ng/kg, q.3d., i.v.), and lanthanum carbonate group (0.3 g/kg, q.d., p.o.). The model group was given 2 % adenine suspension (200 mg/kg, q.d., p.o.) for the first two weeks, followed by adenine (200 mg/kg, b.i.d., p.o.) for 2 weeks, and all animals were sacrificed after eight weeks of administration. 3. The serum and kidneys of rats in each group were collected to detect the oxidative stress indicators and the expressions of LC3B-Ⅱ/Ⅰ, p62, Bcl-2, Bax, Caspase-3 and Cleaved Caspase-3. 4. Human renal tubular epithelial cells (HK-2 cells) were divided into control group, model group, lanthanum chloride group, pyrophosphate (PPI) group, chloroquine (CQ) group, rapamycin group, doxorubicin (DOX) group and N-acetyl-L-cysteine (NAC) group. The mitochondrial status, mitophagy and apoptosis levels were detected.
    RESULTS: 1.Lanthanum-containing preparations can significantly reduce the biochemical indexes of kidney injury in patients with CKD. 2. In the model group, the glomerular and renal tubular edema, the mitochondria were short and round, and the expression of LC3B-Ⅱ/Ⅰ and Bax increased, while the expression of P62, Bcl-2 and Caspase-3 decreased, and there was a significant improvement in the administration group, especially the 0.1 ng/kg group and lanthanum carbonate group. 3. In the HK-2 cell model group, mitochondrial membrane potential decreased, morphology changed and the results were reversed by lanthanum chloride.
    CONCLUSION: Lanthanum chloride may alter the morphology of nano-hydroxyapatite, thereby inhibiting its induced mitophagy and mitochondria-mediated apoptosis, and ultimately improve CKD renal injury effectively.
    Keywords:  Apoptosis; Intravenous injection; Lanthanum chloride; Mitophagy; nHAp
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2024.09.007
  42. Neurobiol Dis. 2024 Sep 14. pii: S0969-9961(24)00267-5. [Epub ahead of print]201 106667
      Huntington's Disease (HD) is an inheritable neurodegenerative condition caused by an expanded CAG trinucleotide repeat in the HTT gene with a direct correlation between CAG repeats expansion and disease severity with earlier onset-of- disease. Previously we have shown that primary skin fibroblasts from HD patients exhibit unique phenotype disease features, including distinct nuclear morphology and perturbed actin cap linked with cell motility, that are correlated with the HD patient disease severity. Here we provide further evidence that mitochondrial fission-fusion morphology balance dynamics, classified using a custom image-based high-content analysis (HCA) machine learning tool, that improved correlation with HD severity status. This mitochondrial phenotype is supported by appropriate changes in fission-fusion biomarkers (Drp1, MFN1, MFN2, VAT1) levels in the HD patients' fibroblasts. These findings collectively point towards a dysregulation in mitochondrial dynamics, where both fission and fusion processes may be disrupted in HD cells compared to healthy controls. This study shows for the first time a methodology that enables identification of HD phenotype before patient's disease onset (Premanifest). Therefore, we believe that this tool holds a potential for improving precision in HD patient's diagnostics bearing the potential to evaluate alterations in mitochondrial dynamics throughout the progression of HD, offering valuable insights into the molecular mechanisms and drug therapy evaluation underlying biological differences in any disease stage.
    Keywords:  Fission and fusion; Huntington's disease; Image-based high content analysis; Machine learning classifier; Mitochondrial morphology; Primary skin fibroblast; Single-cell analysis
    DOI:  https://doi.org/10.1016/j.nbd.2024.106667
  43. BMC Genomics. 2024 Sep 14. 25(1): 860
      BACKGROUND: Organellar transcriptomes are relatively under-studied systems, with data related to full-length transcripts and posttranscriptional modifications remaining sparse. Direct RNA sequencing presents the possibility of accessing a previously unavailable layer of information pertaining to transcriptomic data, as well as circumventing the biases introduced by second-generation RNA-seq platforms. Direct long-read ONT sequencing allows for the isoform analysis of full-length transcripts and the detection of posttranscriptional modifications. However, there are still relatively few projects employing this method specifically for studying organellar transcriptomes.RESULTS: Candida albicans is a promising model for investigating nucleo-mitochondrial interactions. This work comprises ONT sequencing of the Candida albicans mitochondrial transcriptome along with the development of a dedicated data analysis pipeline. This approach allowed for the detection of complete transcript isoforms and posttranslational RNA modifications, as well as an analysis of C. albicans deletion mutants in genes coding for the 5' and 3' mitochondrial RNA exonucleases CaPET127 and CaDSS1. It also enabled for corrections to previous studies in terms of 3' and 5' transcript ends. A number of intermediate splicing isoforms was also discovered, along with mature and unspliced transcripts and changes in their abundances resulting from disruption of both 5' and 3' exonucleolytic processing. Multiple putative posttranscriptional modification sites have also been detected.
    CONCLUSIONS: This preliminary work demonstrates the suitability of direct RNA sequencing for studying yeast mitochondrial transcriptomes in general and provides new insights into the workings of the C. albicans mitochondrial transcriptome in particular. It also provides a general roadmap for analyzing mitochondrial transcriptomic data from other organisms.
    Keywords:   C. albicans ; Direct RNA-seq; Long-read sequencing; Mitochondria; Transcriptome
    DOI:  https://doi.org/10.1186/s12864-024-10791-4