bims-mimbat Biomed News
on Mitochondrial metabolism in brown adipose tissue
Issue of 2022‒07‒24
thirteen papers selected by
José Carlos de Lima-Júnior
University of California San Francisco


  1. BMC Genomics. 2022 Jul 21. 23(1): 528
      BACKGROUND: Adaptive thermogenesis by brown adipose tissue (BAT) is important to the maintenance of temperature in newborn mammals. Cold exposure activates gene expression and lipid metabolism to provide energy for BAT thermogenesis. However, knowledge of BAT metabolism in large animals after cold exposure is still limited.RESULTS: In this study, we found that cold exposure induced expression of BAT thermogenesis genes and increased the protein levels of UCP1 and PGC1α. Pathway analysis showed that cold exposure activated BAT metabolism, which involved in cGMP-PKG, TCA cycle, fatty acid elongation, and degradation pathways. These were accompanied by decreased triglyceride (TG) content and increased phosphatidylcholine (PC) and phosphatidylethanolamine (PE) content in BAT.
    CONCLUSION: These results demonstrate that cold exposure induces metabolites involved in glycerolipids and glycerophospholipids metabolism in BAT. The present study provides evidence for lipid composition associated with adaptive thermogenesis in goat BAT and metabolism pathways regulated by cold exposure.
    Keywords:  Brown adipose tissue; Cold exposure; Lipid metabolism; RNA-seq; Thermogenesis
    DOI:  https://doi.org/10.1186/s12864-022-08765-5
  2. Mol Metab. 2022 Jul 18. pii: S2212-8778(22)00117-X. [Epub ahead of print] 101548
      OBJECTIVE: Cyclin C (CCNC) is the most conserved subunit of the Mediator complex, which is an important transcription cofactor. Recently, we have found that CCNC facilitates brown adipogenesis in vitro by activating C/EBPα-dependent transcription. However, the role of CCNC in brown adipose tissue (BAT) in vivo remains unclear.METHODS: We generated conditional knock-out mice by crossing Ccncflox/flox mice with Myf5Cre, Ucp1Cre or AdipoqCre transgenic mice to investigate the role of CCNC in BAT development and function. We applied glucose and insulin tolerance test, cold exposure and indirect calorimetry to capture the physiological phenotypes and used immunostaining, immunoblotting, qRT-PCR, RNA-seq and cell culture to elucidate the underlying mechanisms.
    RESULTS: Here, we show that deletion of CCNC in Myf5+ progenitor cells caused BAT paucity, despite the fact that there was significant neonatal lethality. Mechanistically different from in vitro, CCNC deficiency impaired the proliferation of embryonic brown fat progenitor cells without affecting brown adipogenesis or cell death. Interestingly, CCNC deficiency robustly reduced age-dependent lipid accumulation in differentiated brown adipocytes in all three mouse models. Mechanistically, CCNC in brown adipocytes is required for lipogenic gene expression through the activation of the C/EBPα/GLUT4/ChREBP axis. Consistent with the importance of de novo lipogenesis under carbohydrate-rich diets, high-fat diet (HFD) feeding abolished CCNC deficiency -caused defects of lipid accumulation in BAT. Although insulin sensitivity and response to acute cold exposure were not affected, CCNC deficiency in Ucp1+ cells enhanced the browning of white adipose tissue (beiging) upon prolonged cold exposure.
    CONCLUSIONS: Together, these data indicate an important role of CCNC-Mediator in the regulation of BAT development and lipid accumulation in brown adipocytes.
    Keywords:  CCNC; brown fat; lipid droplet; lipogenesis; progenitor; proliferation
    DOI:  https://doi.org/10.1016/j.molmet.2022.101548
  3. Elife. 2022 Jul 18. pii: e80167. [Epub ahead of print]11
      Cold exposure triggers neogenesis in classic interscapular brown adipose tissue (iBAT) that involves activation of b1-adrenergic receptors, proliferation of PDGFRA+ adipose tissue stromal cells (ASCs), and recruitment of immune cells whose phenotypes are presently unknown. Single-cell RNA-sequencing (scRNA-seq) in mice identified three ASC subpopulations that occupied distinct tissue locations. Of these, interstitial ASC1 were found to be direct precursors of new brown adipocytes (BAs). Surprisingly, knockout of b1-adrenergic receptors in ASCs did not prevent cold-induced neogenesis, whereas pharmacological activation of the b3-adrenergic receptor on BAs was sufficient, suggesting that signals derived from mature BAs indirectly trigger ASC proliferation and differentiation. In this regard, cold exposure induced the delayed appearance of multiple macrophage and dendritic cell populations whose recruitment strongly correlated with the onset and magnitude of neogenesis across diverse experimental conditions. High resolution immunofluorescence and single molecule fluorescence in situ hybridization demonstrated that cold-induced neogenesis involves dynamic interactions between ASC1 and recruited immune cells that occur on the micrometer scale in distinct tissue regions. Our results indicate that neogenesis is not a reflexive response of progenitors to b-adrenergic signaling, but rather is a complex adaptive response to elevated metabolic demand within brown adipocytes.
    Keywords:  cell biology; mouse
    DOI:  https://doi.org/10.7554/eLife.80167
  4. Biochim Biophys Acta Bioenerg. 2022 Jul 15. pii: S0005-2728(22)00064-0. [Epub ahead of print] 148595
      The cytochrome c oxidase complex, complex VI (CIV), catalyzes the terminal step of the mitochondrial electron transport chain where the reduction of oxygen to water by cytochrome c is coupled to the generation of a protonmotive force that drive the synthesis of ATP. CIV evolution was greatly accelerated in humans and other anthropoid primates and appears to be driven by adaptive selection. However, it is not known if there are significant functional differences between the anthropoid primates CIV, and other mammals. Comparison of the high-resolution structures of bovine CIV, mouse CIV and human CIV shows structural differences that are associated with anthropoid-specific substitutions. Here I examine the possible effects of these substitutions in four CIV peptides that are known to affect proton pumping: the mtDNA-coded subunits I, II and III, and the nuclear-encoded subunit VIa2. I conclude that many of the anthropoid-specific substitutions could be expected to modulate the rate and/or the efficiency of proton pumping. These results are compatible with the previously proposed hypothesis that the accelerated evolution of CIV in anthropoid primates is driven by selection pressure to lower the mitochondrial protonmotive force and thus decrease the rate of superoxide generation by mitochondria.
    Keywords:  Anthropoid primates; Cytochrome c oxidase; Human; Proton pumping; Protonmotive force
    DOI:  https://doi.org/10.1016/j.bbabio.2022.148595
  5. Proc Natl Acad Sci U S A. 2022 Jul 26. 119(30): e2205228119
      The mitochondrial electron transport chain maintains the proton motive force that powers adenosine triphosphate (ATP) synthesis. The energy for this process comes from oxidation of reduced nicotinamide adenine dinucleotide (NADH) and succinate, with the electrons from this oxidation passed via intermediate carriers to oxygen. Complex IV (CIV), the terminal oxidase, transfers electrons from the intermediate electron carrier cytochrome c to oxygen, contributing to the proton motive force in the process. Within CIV, protons move through the K and D pathways during turnover. The former is responsible for transferring two protons to the enzyme's catalytic site upon its reduction, where they eventually combine with oxygen and electrons to form water. CIV is the main site for respiratory regulation, and although previous studies showed that steroid binding can regulate CIV activity, little is known about how this regulation occurs. Here, we characterize the interaction between CIV and steroids using a combination of kinetic experiments, structure determination, and molecular simulations. We show that molecules with a sterol moiety, such as glyco-diosgenin and cholesteryl hemisuccinate, reversibly inhibit CIV. Flash photolysis experiments probing the rapid equilibration of electrons within CIV demonstrate that binding of these molecules inhibits proton uptake through the K pathway. Single particle cryogenic electron microscopy (cryo-EM) of CIV with glyco-diosgenin reveals a previously undescribed steroid binding site adjacent to the K pathway, and molecular simulations suggest that the steroid binding modulates the conformational dynamics of key residues and proton transfer kinetics within this pathway. The binding pose of the sterol group sheds light on possible structural gating mechanisms in the CIV catalytic cycle.
    Keywords:  complex IV; cryo-EM; electron transport chain; kinetics; molecular simulations
    DOI:  https://doi.org/10.1073/pnas.2205228119
  6. Nature. 2022 Jul 20.
      Oocytes form before birth and remain viable for several decades before fertilization1. Although poor oocyte quality accounts for most female fertility problems, little is known about how oocytes maintain cellular fitness, or why their quality eventually declines with age2. Reactive oxygen species (ROS) produced as by-products of mitochondrial activity are associated with lower rates of fertilization and embryo survival3-5. Yet, how healthy oocytes balance essential mitochondrial activity with the production of ROS is unknown. Here we show that oocytes evade ROS by remodelling the mitochondrial electron transport chain through elimination of complex I. Combining live-cell imaging and proteomics in human and Xenopus oocytes, we find that early oocytes exhibit greatly reduced levels of complex I. This is accompanied by a highly active mitochondrial unfolded protein response, which is indicative of an imbalanced electron transport chain. Biochemical and functional assays confirm that complex I is neither assembled nor active in early oocytes. Thus, we report a physiological cell type without complex I in animals. Our findings also clarify why patients with complex-I-related hereditary mitochondrial diseases do not experience subfertility. Complex I suppression represents an evolutionarily conserved strategy that allows longevity while maintaining biological activity in long-lived oocytes.
    DOI:  https://doi.org/10.1038/s41586-022-04979-5
  7. Sci Adv. 2022 Jul 22. 8(29): eabo0155
      Dynamic contacts are formed between endoplasmic reticulum (ER) and mitochondria that enable the exchange of calcium and phospholipids. Disturbed contacts between ER and mitochondria impair mitochondrial dynamics and are a molecular hallmark of Parkinson's disease, which is also characterized by impaired complex I activity and dopaminergic neuron degeneration. Here, we analyzed the role of cysteine-rich with EGF-like domain (Creld), a poorly characterized risk gene for Parkinson's disease, in the regulation of mitochondrial dynamics and function. We found that loss of Creld leads to mitochondrial hyperfusion and reduced ROS signaling in Drosophila melanogaster, Xenopus tropicalis, and human cells. Creld fly mutants show differences in ER-mitochondria contacts and reduced respiratory complex I activity. The resulting low-hydrogen peroxide levels are linked to disturbed neuronal activity and lead to impaired locomotion, but not neurodegeneration, in Creld mutants. We conclude that Creld regulates ER-mitochondria communication and thereby hydrogen peroxide formation, which is required for normal neuron function.
    DOI:  https://doi.org/10.1126/sciadv.abo0155
  8. EMBO J. 2022 Jul 17. e111799
      Piezo1 belongs to mechano-activatable cation channels serving as biological force sensors. However, the molecular events downstream of Piezo1 activation remain unclear. In this study, we used biosensors based on fluorescence resonance energy transfer (FRET) to investigate the dynamic modes of Piezo1-mediated signaling and revealed a bimodal pattern of Piezo1-induced intracellular calcium signaling. Laser-induced shockwaves (LIS) and its associated shear stress can mechanically activate Piezo1 to induce transient intracellular calcium (Ca[i] ) elevation, accompanied by an increase in FAK activity. Interestingly, multiple pulses of shockwave stimulation caused a more sustained calcium increase and a decrease in FAK activity. Similarly, tuning the degree of Piezo1 activation by titrating either the dosage of Piezo1 ligand Yoda1 or the expression level of Piezo1 produced a similar bimodal pattern of FAK responses. Further investigations revealed that SHP2 serves as an intermediate regulator mediating this bimodal pattern in Piezo1 sensing and signaling. These results suggest that the degrees of Piezo1 activation induced by both mechanical LIS and chemical ligand stimulation may determine downstream signaling characteristics.
    Keywords:  FAK; Piezo1; SHP2; calcium; laser-induced shockwaves
    DOI:  https://doi.org/10.15252/embj.2022111799
  9. Front Bioeng Biotechnol. 2022 ;10 906395
      In this study, we described a method for generating functional, beige (thermogenic) adipose microtissues from human microvascular fragments (MVFs). The MVFs were isolated from adipose tissue acquired from adults over 50 years of age. The tissues express thermogenic gene markers and reproduce functions essential for the potential therapeutic impact of beige adipose tissues such as enhanced lipid metabolism and increased mitochondrial respiration. MVFs serve as a potential single, autologous source of cells that can be isolated from adult patients, induced to recreate functional aspects of beige adipose tissue and enable rapid vascularization post-transplantation. This approach has the potential to be used as an autologous therapy for metabolic diseases or as a model for the development of a personalized approach to high-throughput drug development/screening for adipose tissue.
    Keywords:  beige adipocyte; hydrogel; microtissue; microvascular fragments; obesity
    DOI:  https://doi.org/10.3389/fbioe.2022.906395
  10. Proc Natl Acad Sci U S A. 2022 Jul 26. 119(30): e2119872119
      At present, there is no simple, first principles-based, and general model for quantitatively describing the full range of observed biological temperature responses. Here we derive a general theory for temperature dependence in biology based on Eyring-Evans-Polanyi's theory for chemical reaction rates. Assuming only that the conformational entropy of molecules changes with temperature, we derive a theory for the temperature dependence of enzyme reaction rates which takes the form of an exponential function modified by a power law and that describes the characteristic asymmetric curved temperature response. Based on a few additional principles, our model can be used to predict the temperature response above the enzyme level, thus spanning quantum to classical scales. Our theory provides an analytical description for the shape of temperature response curves and demonstrates its generality by showing the convergence of all temperature dependence responses onto universal relationships-a universal data collapse-under appropriate normalization and by identifying a general optimal temperature, around 25 ∘C, characterizing all temperature response curves. The model provides a good fit to empirical data for a wide variety of biological rates, times, and steady-state quantities, from molecular to ecological scales and across multiple taxonomic groups (from viruses to mammals). This theory provides a simple framework to understand and predict the impact of temperature on biological quantities based on the first principles of thermodynamics, bridging quantum to classical scales.
    Keywords:  metabolic theory; scaling; temperature kinetics
    DOI:  https://doi.org/10.1073/pnas.2119872119
  11. ACS Chem Biol. 2022 Jul 19.
      Targeting the cancer cell mitochondrion is a promising approach for developing novel anticancer agents. The experimental anticancer agent N,N'-bis(3,5-dichlorophenyl)urea (SR4) induces apoptotic cell death in several cancer cell lines by uncoupling mitochondrial oxidative phosphorylation (OxPhos) using a protein-free mechanism. However, the precise mechanism by which SR4 depolarizes mitochondria is unclear because SR4 lacks an acidic functional group typically found in protein-independent uncouplers. Recently, it was shown that structurally related thioureas can facilitate proton transport across lipid bilayers by a fatty acid-activated mechanism, in which the fatty acid acts as the site of protonation/deprotonation and the thiourea acts as an anion transporter that shuttles deprotonated fatty acids across the phospholipid bilayer to enable proton leak. In this paper, we show that SR4-mediated proton transport is enhanced by the presence of free fatty acids in the lipid bilayer, indicating that SR4 uncouples mitochondria through the fatty acid-activated mechanism. This mechanistic insight was used to develop a library of substituted bisaryl ureas for structure-activity relationship studies and subsequent cell testing. It was found that lipophilic electron-withdrawing groups on bisaryl ureas enhanced electrogenic proton transport via the fatty acid-activated mechanism and had the capacity to depolarize mitochondria and reduce the viability of MDA-MB-231 breast cancer cells. The most active compound in the series reduced cell viability with greater potency than SR4 and was more effective at inhibiting adenosine triphosphate production.
    DOI:  https://doi.org/10.1021/acschembio.1c00807
  12. Proc Natl Acad Sci U S A. 2022 Jul 19. 119(29): e2202269119
      Piezo1 channels are essential mechanically activated ion channels in vertebrates. Their selective activation by the synthetic chemical activator Yoda1 opened new avenues to probe their gating mechanisms and develop novel pharmaceuticals. Yet, the nature and extent of Piezo1 functions modulated by this small molecule remain unclear. Here we close this gap by conducting a comprehensive biophysical investigation of the effects of Yoda1 on mouse Piezo1 in mammalian cells. Using calcium imaging, we first show that cysteine bridges known to inhibit mechanically evoked Piezo1 currents also inhibit activation by Yoda1, suggesting Yoda1 acts by energetically modulating mechanosensory domains. The presence of Yoda1 alters single-channel dwell times and macroscopic kinetics consistent with a dual and reciprocal energetic modulation of open and shut states. Critically, we further discovered that the electrophysiological effects of Yoda1 depend on membrane potential and temperature, two other Piezo1 modulators. This work illuminates a complex interplay between physical and chemical modulators of Piezo1 channels.
    Keywords:  Piezo1; Yoda1; mechanotransduction; membrane potential; temperature
    DOI:  https://doi.org/10.1073/pnas.2202269119
  13. Biochim Biophys Acta Bioenerg. 2022 Jul 16. pii: S0005-2728(22)00063-9. [Epub ahead of print]1863(7): 148594
      6-Ketocholestanol (kCh) is known as a mitochondrial recoupler, i.e. it abolishes uncoupling of mitochondria by such potent agents as carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and 3,5-di(tert-butyl)-4-hydroxybenzylidenemalononitril (SF6847) [Starkov et al., 1997]. Here, we report data on the kCh-induced inhibition of both NADH-oxidase and NADH-ubiquinone oxidoreductase activities of the respiratory complex I in bovine heart submitochondrial particles (SMP). Based on the absence of such inhibition with hexaammineruthenium (III) (HAR) as the complex I electron acceptor, the kCh effect could be associated with the ubiquinone-binding centre of this respiratory enzyme. In isolated rat liver mitochondria (RLM), kCh inhibited oxygen consumption with the glutamate/malate, substrates of NAD-linked dehydrogenases, while no inhibition of RLM respiration was observed with succinate, in agreement with the absence of the kCh effect on the succinate oxidase activity in SMP. Three kCh analogs (cholesterol, 6α-hydroxycholesterol, and 5α,6α-epoxycholesterol) exhibited no effect on the NADH oxidase activities in both SMP and RLM. Importantly, the kCh analogs were ineffective in the recoupling of RLM treated with CCCP or SF6847. Therefore, interaction of kCh with the complex I may be involved in the kCh-mediated mitochondrial recoupling.
    Keywords:  6-Ketocholestanol; Mitochondria; Recoupling; Respiratory complex I; Submitochondrial particles; Uncoupler
    DOI:  https://doi.org/10.1016/j.bbabio.2022.148594