bims-mimbat Biomed News
on Mitochondrial metabolism in brown adipose tissue
Issue of 2023‒04‒23
ten papers selected by
José Carlos de Lima-Júnior
Washington University


  1. J Am Chem Soc. 2023 Apr 21.
      Microbial rhodopsins are a large family of photoreceptive membrane proteins with diverse light-regulated functions. While the most ubiquitous microbial rhodopsins are light-driven outward proton (H+) pumps, new subfamilies of microbial rhodopsins transporting H+ inwardly, i.e., light-driven inward H+ pumps, have been discovered recently. Although structural and spectroscopic studies provide insights into their ion transport mechanisms, the minimum key element(s) that determine the direction of H+ transport have not yet been clarified. Here, we conducted the first functional conversion study by substituting key amino acids in a natural outward H+-pumping rhodopsin (PspR) with those in inward H+-pumping rhodopsins. Consequently, an artificial inward H+ pump was constructed by mutating only three residues of PspR. This result indicates that these residues govern the key processes that discriminate between outward and inward H+ pumps. Spectroscopic studies revealed the presence of an inward H+-accepting residue in the H+ transport pathway and direct H+ uptake from the extracellular solvent. This finding of the simple element for determining H+ transport would provide a new basis for understanding the concept of ion transport not only by microbial rhodopsins but also by other ion-pumping proteins.
    DOI:  https://doi.org/10.1021/jacs.2c12602
  2. J Biol Chem. 2023 Apr 13. pii: S0021-9258(23)01736-2. [Epub ahead of print] 104708
      Physiologic Ca2+ entry via the Mitochondrial Calcium Uniporter (MCU) participates in energetic adaption to workload but may also contribute to cell death during Ischemia/Reperfusion (I/R) injury. The MCU has been identified as the primary mode of Ca2+ import into mitochondria. Several groups have tested the hypothesis that Ca2+ import via MCU is detrimental during I/R injury using genetically-engineered mouse models, yet the results from these studies are inconclusive. Furthermore, mitochondria exhibit unstable or oscillatory membrane potentials (ΔΨm) when subjected to stress, such as during I/R, but it is unclear if the primary trigger is excess influx of mitochondrial Ca2+ (mCa2+), reactive oxygen species (ROS) accumulation, or other factors. Here, we critically examine whether MCU-mediated mitochondrial Ca2+ uptake during I/R is involved in ΔΨm instability, or sustained mitochondrial depolarization, during reperfusion by acutely knocking out MCU in neonatal mouse ventricular myocyte (NMVM) monolayers subjected to simulated I/R. Unexpectedly, we find that MCU knockout does not significantly alter mCa2+ import during I/R, nor does it affect ΔΨm recovery during reperfusion. In contrast, blocking the mitochondrial sodium-calcium exchanger (mNCE) suppressed the mCa2+ increase during Ischemia but did not affect ΔΨm recovery or the frequency of ΔΨm oscillations during reperfusion, indicating that mitochondrial ΔΨm instability on reperfusion is not triggered by mCa2+. Interestingly, inhibition of mitochondrial electron transport or supplementation with antioxidants stabilized I/R-induced ΔΨm oscillations. The findings are consistent with mCa2+ overload being mediated by reverse-mode mNCE activity and support ROS-induced ROS release as the primary trigger of ΔΨm instability during reperfusion injury.
    Keywords:  image processing; ischemia; mitochondrial membrane potential; oscillation; oxidative phosphorylation; reperfusion; time-series analysis; wavelet
    DOI:  https://doi.org/10.1016/j.jbc.2023.104708
  3. Cell Metab. 2023 Apr 11. pii: S1550-4131(23)00094-3. [Epub ahead of print]
      Even-chain acylcarnitine (AC) metabolites, most of which are generated as byproducts of incomplete fatty acid oxidation (FAO), are viewed as biomarkers of mitochondrial lipid stress attributable to one or more metabolic bottlenecks in the β-oxidation pathway. The origins and functional implications of FAO bottlenecks remain poorly understood. Here, we combined a sophisticated mitochondrial phenotyping platform with state-of-the-art molecular profiling tools and multiple two-state mouse models of respiratory function to uncover a mechanism that connects AC accumulation to lipid intolerance, metabolic inflexibility, and respiratory inefficiency in skeletal muscle mitochondria. These studies also identified a short-chain carbon circuit at the C4 node of FAO wherein reverse flux of glucose-derived acetyl CoA through medium-chain ketothiolase enhances lipid tolerance and redox stability in heart mitochondria by regenerating free CoA and NAD+. The findings help to explain why diminished FAO capacity, AC accumulation, and metabolic inflexibility are tightly linked to poor health outcomes.
    Keywords:  acylcarnitines; bioenergetics; exercise; fatty acid oxidation; heart; ketothiolase; metabolic flexibility; mitochondria; pyruvate; skeletal muscle
    DOI:  https://doi.org/10.1016/j.cmet.2023.03.016
  4. Mol Cell. 2023 Apr 20. pii: S1097-2765(23)00213-7. [Epub ahead of print]83(8): 1340-1349.e7
      The glycerol-3-phosphate shuttle (G3PS) is a major NADH shuttle that regenerates reducing equivalents in the cytosol and produces energy in the mitochondria. Here, we demonstrate that G3PS is uncoupled in kidney cancer cells where the cytosolic reaction is ∼4.5 times faster than the mitochondrial reaction. The high flux through cytosolic glycerol-3-phosphate dehydrogenase (GPD) is required to maintain redox balance and support lipid synthesis. Interestingly, inhibition of G3PS by knocking down mitochondrial GPD (GPD2) has no effect on mitochondrial respiration. Instead, loss of GPD2 upregulates cytosolic GPD on a transcriptional level and promotes cancer cell proliferation by increasing glycerol-3-phosphate supply. The proliferative advantage of GPD2 knockdown tumor can be abolished by pharmacologic inhibition of lipid synthesis. Taken together, our results suggest that G3PS is not required to run as an intact NADH shuttle but is instead truncated to support complex lipid synthesis in kidney cancer.
    Keywords:  GPD; NAD; glycerol; glycerol-3-phosphate dehydrogenase; glycerol-3-phosphate shuttle; kidney cancer; lipids; metabolism; mitochondria
    DOI:  https://doi.org/10.1016/j.molcel.2023.03.023
  5. J Biol Chem. 2023 Apr 13. pii: S0021-9258(23)01743-X. [Epub ahead of print] 104715
      Trypanosomatids are a diverse group of uniflagellate protozoan parasites that include globally relevant pathogens such asTrypanosoma cruzi, the causative agent of Chagas disease. Trypanosomes lack the fatty acid synthase (FAS)-I system typically used for de novo fatty acid (FA) synthesis in other eukaryotes. Instead, these microbes have evolved a modular fatty acid elongase (ELO) system comprised of individual ELO enzymes (ELO1-4) that can operate processively to generate long chain- and very long chain-fatty acids. The importance of ELO's for maintaining lipid homeostasis in trypanosomatids is currently unclear, given their ability to take up and utilize exogenous fatty acids for lipid synthesis. To assess ELO function in T. cruzi, we generated individual knockout lines, Δelo1, Δelo2 and Δelo3, in which the genes encoding ELO1-3 were functionally disrupted in the parasite insect stage (epimastigote). Using unbiased lipidomic and metabolomic analyses, in combination with metabolic tracing and biochemical approaches, we demonstrate that ELO2 and ELO3 are required for global lipid homeostasis, whereas ELO1 is dispensable for this function. Instead, ELO1 activity is needed to sustain mitochondrial activity and normal growth in T. cruziepimastigotes. The cross-talk between microsomal ELO1 and the mitochondrion is a novel finding that, we propose, merits further examination of the trypanosomatid ELO pathway as critical for central metabolism.
    Keywords:  Trypanosoma cruzi; elongases; fatty acid; growth; lipid synthesis; metabolism
    DOI:  https://doi.org/10.1016/j.jbc.2023.104715
  6. Cell Rep. 2023 Apr 21. pii: S2211-1247(23)00422-9. [Epub ahead of print]42(5): 112411
      Cellular metabolism is tightly regulated by growth factor signaling, which promotes metabolic rewiring to support growth and proliferation. While growth factor-induced transcriptional and post-translational modes of metabolic regulation have been well defined, whether post-transcriptional mechanisms impacting mRNA stability regulate this process is less clear. Here, we present the ZFP36/L1/L2 family of RNA-binding proteins and mRNA decay factors as key drivers of metabolic regulation downstream of acute growth factor signaling. We quantitatively catalog metabolic enzyme and nutrient transporter mRNAs directly bound by ZFP36 following growth factor stimulation-many of which encode rate-limiting steps in metabolic pathways. Further, we show that ZFP36 directly promotes the mRNA decay of Enolase 2 (Eno2), altering Eno2 protein expression and enzymatic activity, and provide evidence of a ZFP36/Eno2 axis during VEGF-stimulated developmental retinal angiogenesis. Thus, ZFP36-mediated mRNA decay serves as an important mode of metabolic regulation downstream of growth factor signaling within dynamic cell and tissue states.
    Keywords:  CP: Metabolism; CP: Molecular biology; RNA-binding proteins; growth factor signaling; mRNA stability; metabolism
    DOI:  https://doi.org/10.1016/j.celrep.2023.112411
  7. ACS Nano. 2023 Apr 17.
      A quantitative description of ionophore-mediated ion transport is important in understanding ionophore activity in biological systems and developing ionophore applications. Herein, we describe the direct measurement of the electrical current resulting from K+ transport mediated by individual valinomycin (val) ionophores. Step fluctuations in current measured across a 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) bilayer suspended over a ∼400 nm radius glass nanopore result from dynamic partitioning of val between the bilayer and torus region, effectively increasing or decreasing the total number of val present in the membrane. In our studies, approximately 30 val are present in the membrane on average with a val entering or leaving the bilayer approximately every 50 s, allowing measurement of changes in electrical current associated with individual val. The single-molecule val(K+) transport current at 0.1 V applied potential is (1.3 ± 0.6) × 10-15 A, consistent with estimates of the transport kinetics based on large val ensembles. This methodology for analyzing single ionophore transport is general and can be applied to other carrier-type ionophores.
    Keywords:  electron shot noise; femptoampere; ionophore; nanopore; single molecule; valinomycin
    DOI:  https://doi.org/10.1021/acsnano.3c02825
  8. Quant Plant Biol. 2021 ;2 e7
      Efficient photosynthesis requires a balance of ATP and NADPH production/consumption in chloroplasts, and the exportation of reducing equivalents from chloroplasts is important for balancing stromal ATP/NADPH ratio. Here, we showed that the overexpression of purple acid phosphatase 2 on the outer membranes of chloroplasts and mitochondria can streamline the production and consumption of reducing equivalents in these two organelles, respectively. A higher capacity of consumption of reducing equivalents in mitochondria can indirectly help chloroplasts to balance the ATP/NADPH ratio in stroma and recycle NADP+, the electron acceptors of the linear electron flow (LEF). A higher rate of ATP and NADPH production from the LEF, a higher capacity of carbon fixation by the Calvin-Benson-Bassham (CBB) cycle and a greater consumption of NADH in mitochondria enhance photosynthesis in the chloroplasts, ATP production in the mitochondria and sucrose synthesis in the cytosol and eventually boost plant growth and seed yields in the overexpression lines.
    Keywords:  ATP; AtPAP2; NADPH; chloroplasts; mitochondria; photosynthesis
    DOI:  https://doi.org/10.1017/qpb.2021.7
  9. PLoS Biol. 2023 Apr;21(4): e3001820
      Movement is critical to animal survival and, thus, biodiversity in fragmented landscapes. Increasing fragmentation in the Anthropocene necessitates predictions about the movement capacities of the multitude of species that inhabit natural ecosystems. This requires mechanistic, trait-based animal locomotion models, which are sufficiently general as well as biologically realistic. While larger animals should generally be able to travel greater distances, reported trends in their maximum speeds across a range of body sizes suggest limited movement capacities among the largest species. Here, we show that this also applies to travel speeds and that this arises because of their limited heat-dissipation capacities. We derive a model considering how fundamental biophysical constraints of animal body mass associated with energy utilisation (i.e., larger animals have a lower metabolic energy cost of locomotion) and heat-dissipation (i.e., larger animals require more time to dissipate metabolic heat) limit aerobic travel speeds. Using an extensive empirical dataset of animal travel speeds (532 species), we show that this allometric heat-dissipation model best captures the hump-shaped trends in travel speed with body mass for flying, running, and swimming animals. This implies that the inability to dissipate metabolic heat leads to the saturation and eventual decrease in travel speed with increasing body mass as larger animals must reduce their realised travel speeds in order to avoid hyperthermia during extended locomotion bouts. As a result, the highest travel speeds are achieved by animals of intermediate body mass, suggesting that the largest species are more limited in their movement capacities than previously anticipated. Consequently, we provide a mechanistic understanding of animal travel speed that can be generalised across species, even when the details of an individual species' biology are unknown, to facilitate more realistic predictions of biodiversity dynamics in fragmented landscapes.
    DOI:  https://doi.org/10.1371/journal.pbio.3001820
  10. Microbes Environ. 2023 ;38(2):
      Propionate oxidation in Pelotomaculum thermopropionicum is performed under a thermodynamic limit. The most energetically unfavorable reaction in the propionate oxidation pathway is succinate oxidation. Based on previous genomic and transcriptomic ana-lyses, succinate oxidation in P. thermopropionicum under propionate-oxidizing conditions is conducted by the membrane-bound forms of two succinate dehydrogenases (SDHs). We herein examined the activity of SDH, the mechanisms underlying the succinate oxidation reaction in P. thermopropionicum, and the importance of the protein sequences of related genes. SDH activity was highly localized to the membrane fraction. An ana-lysis of the soluble fraction revealed that fumarate reductase received electrons from NADH, suggesting the involvement of membrane-bound SDH in propionate oxidation. We utilized an uncoupler and inhibitors of adenosine triphosphate (ATP) synthase and membrane-bound SDH to investigate whether the membrane potential of P. thermopropionicum supports propionate oxidation alongside hydrogen production. These chemicals inhibited hydrogen production, indicating that membrane-bound SDH requires a membrane potential for succinate oxidation, and this membrane potential is maintained by ATP synthase. In addition, the phylogenetic distribution of the flavin adenine dinucleotide-binding subunit and conserved amino acid sequences of the cytochrome b subunit of SDHs in propionate-oxidizing bacteria suggests that membrane-bound SDHs possess specific conserved amino acid residues that are strongly associated with efficient succinate oxidation in syntrophic propionate-oxidizing bacteria.
    Keywords:  hydrogen production; membrane potential; propionate oxidation; succinate dehydrogenase
    DOI:  https://doi.org/10.1264/jsme2.ME22111