bims-mimbat Biomed News
on Mitochondrial metabolism in brown adipose tissue
Issue of 2024‒04‒21
four papers selected by
José Carlos de Lima-Júnior, Washington University



  1. Biochem Biophys Res Commun. 2024 Apr 16. pii: S0006-291X(24)00480-7. [Epub ahead of print]712-713 149944
      This work examined the effect of 2-aminoethoxydiphenyl borate (2-APB) on the functioning of isolated mouse skeletal muscle mitochondria and modeled its putative interaction with mitochondrial proteins. We have shown that 2-APB is able to dose-dependently suppress mitochondrial respiration in state 3 and 3UDNP driven by substrates of complex I and II. This effect of 2-APB was accompanied by a slight dose-dependent decrease in mitochondrial membrane potential and appears to be due to inhibition of complex I and complex III of the electron transport chain (ETC) with IC50 values of 200 and 120 μM, respectively. The results of molecular docking identified putative 2-APB interaction sites in these ETC complexes. 2-APB was shown to dose-dependently inhibit both mitochondrial Ca2+ uptake and Ca2+ efflux, which seems to be caused by a decrease in the membrane potential of the organelles. We have found that 2-APB has no significant effect on mitochondrial calcium retention capacity. On the other hand, 2-APB exhibited antioxidant effect by reducing mitochondrial hydrogen peroxide production but without affecting superoxide generation. It is concluded that the effect of 2-APB on mitochondrial targets should be taken into account when interpreting the results of cell and in vivo experiments.
    Keywords:  2-Aminoethoxydiphenyl borate; Calcium; Electron transport chain; MPT-Pore; Skeletal muscle mitochondria
    DOI:  https://doi.org/10.1016/j.bbrc.2024.149944
  2. bioRxiv. 2024 Apr 03. pii: 2024.04.02.587796. [Epub ahead of print]
      Mitochondria play a pivotal role in ATP energy production through oxidative phosphorylation, which occurs within the inner membrane via a series of respiratory complexes. Despite extensive in-vitro structural studies, revealing the atomic details of their molecular mechanisms in physiological states remains a major challenge, primarily because of the loss of the native environment during purification. Here, we directly image porcine mitochondria using an in-situ cryo-electron microscopy approach. This enables us to determine the structures of various high-order assemblies of respiratory supercomplexes in their native states, achieving up to 1.8-Å local resolution. We identify four major supercomplex organizations: I1III2IV1, I1III2IV2, I2III2IV2, and I2III4IV2, which can potentially expand into higher-order arrays on the inner membranes. The formation of these diverse supercomplexes is largely contributed by 'protein-lipids-protein' interactions, which in turn dramatically impact the local geometry of the surrounding membranes. Our in-situ structures also capture numerous reactive intermediates within these respiratory supercomplexes, shedding light on the dynamic processes of the ubiquinone/ubiquinol exchange mechanism in complex I and the Q-cycle in complex III. By comparing supercomplex structures from mitochondria treated under distinct conditions, we elucidate how conformational changes and ligand binding states interplay between complexes I and III in response to environmental redox alterations. Our approach, by preserving the native membrane environment, enables structural studies of mitochondrial respiratory supercomplexes in reaction at high resolution across multiple scales, spanning from atomic-level details to the broader subcellular context.
    DOI:  https://doi.org/10.1101/2024.04.02.587796
  3. Biochemistry (Mosc). 2024 Feb;89(2): 279-298
      An increase in mitochondrial DNA (mtDNA) mutations and an ensuing increase in mitochondrial reactive oxygen species (ROS) production have been suggested to be a cause of the aging process ("the mitochondrial hypothesis of aging"). In agreement with this, mtDNA-mutator mice accumulate a large amount of mtDNA mutations, giving rise to defective mitochondria and an accelerated aging phenotype. However, incongruously, the rates of ROS production in mtDNA mutator mitochondria have generally earlier been reported to be lower - not higher - than in wildtype, thus apparently invalidating the "mitochondrial hypothesis of aging". We have here re-examined ROS production rates in mtDNA-mutator mice mitochondria. Using traditional conditions for measuring ROS (succinate in the absence of rotenone), we indeed found lower ROS in the mtDNA-mutator mitochondria compared to wildtype. This ROS mainly results from reverse electron flow driven by the membrane potential, but the membrane potential reached in the isolated mtDNA-mutator mitochondria was 33 mV lower than that in wildtype mitochondria, due to the feedback inhibition of succinate oxidation by oxaloacetate, and to a lower oxidative capacity in the mtDNA-mutator mice, explaining the lower ROS production. In contrast, in normal forward electron flow systems (pyruvate (or glutamate) + malate or palmitoyl-CoA + carnitine), mitochondrial ROS production was higher in the mtDNA-mutator mitochondria. Particularly, even during active oxidative phosphorylation (as would be ongoing physiologically), higher ROS rates were seen in the mtDNA-mutator mitochondria than in wildtype. Thus, when examined under physiological conditions, mitochondrial ROS production rates are indeed increased in mtDNA-mutator mitochondria. While this does not prove the validity of the mitochondrial hypothesis of aging, it may no longer be said to be negated in this respect. This paper is dedicated to the memory of Professor Vladimir P. Skulachev.
    Keywords:  ROS production; aging; membrane potential; mtDNA mutator mice; oxidative phosphorylation; succinate
    DOI:  https://doi.org/10.1134/S0006297924020081
  4. Nat Aging. 2024 Apr 16.
      Recent investigations into heterochronic parabiosis have unveiled robust rejuvenating effects of young blood on aged tissues. However, the specific rejuvenating mechanisms remain incompletely elucidated. Here we demonstrate that small extracellular vesicles (sEVs) from the plasma of young mice counteract pre-existing aging at molecular, mitochondrial, cellular and physiological levels. Intravenous injection of young sEVs into aged mice extends their lifespan, mitigates senescent phenotypes and ameliorates age-associated functional declines in multiple tissues. Quantitative proteomic analyses identified substantial alterations in the proteomes of aged tissues after young sEV treatment, and these changes are closely associated with metabolic processes. Mechanistic investigations reveal that young sEVs stimulate PGC-1α expression in vitro and in vivo through their miRNA cargoes, thereby improving mitochondrial functions and mitigating mitochondrial deficits in aged tissues. Overall, this study demonstrates that young sEVs reverse degenerative changes and age-related dysfunction, at least in part, by stimulating PGC-1α expression and enhancing mitochondrial energy metabolism.
    DOI:  https://doi.org/10.1038/s43587-024-00612-4