bims-mimbat Biomed News
on Mitochondrial metabolism in brown adipose tissue
Issue of 2025–01–12
eleven papers selected by
José Carlos de Lima-Júnior, Washington University



  1. Nat Cell Biol. 2025 Jan 08.
      Mitochondria are central to myriad biochemical processes, and thus even their moderate impairment could have drastic cellular consequences if not rectified. Here, to explore cellular strategies for surmounting mitochondrial stress, we conducted a series of chemical and genetic perturbations to Saccharomyces cerevisiae and analysed the cellular responses using deep multiomic mass spectrometry profiling. We discovered that mobilization of lipid droplet triacylglycerol stores was necessary for strains to mount a successful recovery response. In particular, acyl chains from these stores were liberated by triacylglycerol lipases and used to fuel biosynthesis of the quintessential mitochondrial membrane lipid cardiolipin to support new mitochondrial biogenesis. We demonstrate that a comparable recovery pathway exists in mammalian cells, which fail to recover from doxycycline treatment when lacking the ATGL lipase. Collectively, our work reveals a key component of mitochondrial stress recovery and offers a rich resource for further exploration of the broad cellular responses to mitochondrial dysfunction.
    DOI:  https://doi.org/10.1038/s41556-024-01586-6
  2. Diabetes. 2025 Jan 09. pii: db240289. [Epub ahead of print]
      To curb the obesity epidemic, it is imperative that we improve our understanding of the mechanisms controlling fat mass and body weight regulation. While great progress has been made in mapping the biological feedback forces opposing weight loss, the mechanisms countering weight gain remain less well defined. Here, we integrate a mouse model of intragastric overfeeding with a comprehensive evaluation of the regulatory aspects of energy balance, encompassing food intake, energy expenditure, and fecal energy excretion. Furthermore, to assess the role of adipose tissue thermogenesis in protecting against overfeeding-induced weight gain, we analyze the expression of genes involved in futile metabolic cycles in response to overfeeding and subject uncoupling protein 1 (UCP1) knockout (KO) mice to intragastric overfeeding. Data from two independent experiments demonstrate that 7 days of 140-150% overfeeding results in substantial weight gain and triggers a potent, sustained decrease in voluntary food intake, which coincides with a gradual return of body weight toward baseline after overfeeding. Intragastric overfeeding triggers an increase in energy expenditure that seems to be adaptive. However, mice lacking UCP1 are not impaired in their ability to defend against overfeeding-induced weight gain. Finally, we show that fecal energy excretion decreases in response to overfeeding, but only during the recovery period, driven primarily by a reduction in fecal output rather than in fecal caloric density. In conclusion, while overfeeding may induce adaptive thermogenesis, the primary protective response to forced weight gain in mice appears to be a potent reduction in food intake.
    DOI:  https://doi.org/10.2337/db24-0289
  3. Biochim Biophys Acta Mol Cell Res. 2025 Jan 05. pii: S0167-4889(25)00005-9. [Epub ahead of print] 119900
      The uptake of Ca2+ by mitochondria is an important and tightly controlled process in various tissues. Even small changes in the key proteins involved in this process can lead to significant cellular dysfunction and, ultimately, cell death. In this study, we used stimulated emission depletion (STED) microscopy and developed an unbiased approach to monitor the sub-mitochondrial distribution and dynamics of the mitochondrial calcium uniporter (MCU) and mitochondrial calcium uptake 1 (MICU1) under resting and stimulated conditions. To visualize the inner mitochondrial membrane, the STED-optimized dye called pkMitoRed was used. The study presented herein builds on the previously verified exclusive localization of MICU1 in the intermembrane space, and that MCU moves exclusively laterally along the inner mitochondrial membrane (IMM). We applied a multi-angled arrow histogram to analyze the distribution of proteins within mitochondria, providing a one-dimensional view of protein localization along a defined distance. Combining this with optimal transport colocalization enabled us to further predict submitochondrial protein distribution. Results indicate that in HeLa cells Ca2+ elevation yielded MCU translocation from the cristae membrane (CM) to the inner boundary membrane (IBM). In AC16 cardiomyocyte cell line, MCU is mainly located at the IBM under resting conditions, and it translocates to the CM upon rising Ca2+. Our data describe a novel unbiased super-resolution image analysis approach. Our showcase sheds light on differences in spatial distribution dynamics of MCU in cell lines with different MICU1:MCU abundance.
    Keywords:  Inner mitochondrial membrane (IMM); Mitochondrial calcium uniporter (MCU); Mitochondrial calcium uptake 1 (MICU1); Stimulated-emission depletion (STED); Structured illumination microscopy (SIM)
    DOI:  https://doi.org/10.1016/j.bbamcr.2025.119900
  4. Nat Commun. 2025 Jan 09. 16(1): 533
      N6-methyladenosine (m6A) is among the most abundant mRNA modifications, yet its cell-type-specific regulatory roles remain unclear. Here we show that m6A methyltransferase-like 14 (METTL14) differentially regulates transcriptome in brown versus white adipose tissue (BAT and WAT), leading to divergent metabolic outcomes. In humans and mice with insulin resistance, METTL14 expression differs significantly from BAT and WAT in the context of its correlation with insulin sensitivity. Mettl14-knockout in BAT promotes prostaglandin secretion, improving systemic insulin sensitivity. Conversely, Mettl14-knockout in WAT triggers adipocyte apoptosis and systemic insulin resistance. m6A-seq and RNA-seq integration revealed upregulated prostaglandin biosynthesis pathways in BAT and apoptotic pathways in WAT with Mettl14 deficiency. Stable METTL14-knockout hBAs/hWAs show METTL14-mediated m6A promotes mRNA decay of PTGES2 and CBR1 in hBAs and TRAIL and TNFR1 in hWAs. These data shed light on the ability of m6A to impact metabolism in a cell-type-specific manner with implications for influencing the pathophysiology of metabolic diseases.
    DOI:  https://doi.org/10.1038/s41467-024-55694-w
  5. Cell Metab. 2025 Jan 08. pii: S1550-4131(24)00457-1. [Epub ahead of print]
      Mitochondrial electron transport chain (ETC) complexes partition between free complexes and quaternary assemblies known as supercomplexes (SCs). However, the physiological requirement for SCs and the mechanisms regulating their formation remain controversial. Here, we show that genetic perturbations in mammalian ETC complex III (CIII) biogenesis stimulate the formation of a specialized extra-large SC (SC-XL) with a structure of I2+III2, resolved at 3.7 Å by cryoelectron microscopy (cryo-EM). SC-XL formation increases mitochondrial cristae density, reduces CIII reactive oxygen species (ROS), and sustains normal respiration despite a 70% reduction in CIII activity, effectively rescuing CIII deficiency. Consequently, inhibiting SC-XL formation in CIII mutants using the Uqcrc1DEL:E258-D260 contact site mutation leads to respiratory decompensation. Lastly, SC-XL formation promotes fatty acid oxidation (FAO) and protects against ischemic heart failure in mice. Our study uncovers an unexpected plasticity in the mammalian ETC, where structural adaptations mitigate intrinsic perturbations, and suggests that manipulating SC-XL formation is a potential therapeutic strategy for mitochondrial dysfunction.
    Keywords:  complex I; complex III; complex III ROS; cryo-EM structure; electron transport chain; ischemia reperfusion injury; mitohormesis; respirasome; reverse electron transport; supercomplex
    DOI:  https://doi.org/10.1016/j.cmet.2024.11.011
  6. Commun Biol. 2025 Jan 09. 8(1): 31
      Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT. Next, we identified four iBAT-specific active enhancers of Ucp1, and three of them were activated by cold stimulation. Transcriptional repression of the Ucp1-En4 or Ucp1-En6 region significantly downregulated Ucp1 and impaired mitochondrial function in brown adipocytes. Furthermore, depletion of the cohesin subunit RAD21 decreased the interaction intensity between Ucp1-En4 and the Ucp1 promoter and downregulated Ucp1. EBF2 cooperated with the acetyltransferase CBP to regulate Ucp1-En4 activity and increase Ucp1 transcriptional activity. In vivo, lentivirus-mediated repression of Ucp1-En4 was injected into iBAT, resulting in impacted iBAT thermogenic capacity and impaired iBAT mitochondrial function under cold acclimation conditions. Studying the functional enhancers regulating Ucp1 expression in iBAT will provide important insights into the regulatory mechanisms of BAT activity.
    DOI:  https://doi.org/10.1038/s42003-025-07468-3
  7. Nat Cell Biol. 2025 Jan 07.
      Mitochondrial protein import through the outer and inner membranes is key to mitochondrial biogenesis. Recent studies have explored how cells respond when import is impaired by a variety of different insults. Here, we developed a mammalian import blocking system using dihydrofolate reductase fused to the N terminus of the inner membrane protein MIC60. While stabilization of the dihydrofolate reductase domain by methotrexate inhibited endogenous mitochondrial protein import, it neither activated the transcription factor ATF4, nor was affected by ATAD1 expression or by VCP/p97 inhibition. On the other hand, notably, plugging the channel of translocase of the outer membrane) induced YME1L1, an ATP-dependent protease, to eliminate translocase of the inner membrane (TIM23) channel components TIMM17A and TIMM23. The data suggest that unoccupied TIM23 complexes expose a C-terminal degron on TIMM17A to YME1L1 for degradation. Import plugging caused a cell growth defect and loss of YME1L1 exacerbated the growth inhibition, showing the protective effect of YME1L1 activity. YME1L1 seems to play a crucial role in mitochondrial quality control to counteract precursor stalling in the translocase of the outer membrane complex and unoccupied TIM23 channels.
    DOI:  https://doi.org/10.1038/s41556-024-01571-z
  8. Cell Metab. 2025 Jan 07. pii: S1550-4131(24)00487-X. [Epub ahead of print]37(1): 5-6
      Mitochondria produce energy and building blocks essential for cell growth. How these competing processes are balanced and sustained during nutrient scarcity remains unclear. Ryu et al. uncover distinct mitochondrial subpopulations, one dedicated to ATP production and another to macromolecule synthesis, enabling cell growth and proliferation under nutrient-limiting conditions.
    DOI:  https://doi.org/10.1016/j.cmet.2024.12.006
  9. Nature. 2025 Jan;637(8045): 252
      
    Keywords:  Ethics; Genomics; Health care; Society
    DOI:  https://doi.org/10.1038/d41586-025-00015-4
  10. Commun Biol. 2025 Jan 09. 8(1): 24
      Mitochondria play a crucial role in maintaining cellular health. It is interesting that the shape of mitochondria can vary depending on the type of cell, mitochondrial function, and other cellular conditions. However, there are limited studies that link functional assessment with mitochondrial morphology evaluation at high magnification, even fewer that do so in situ and none in human muscle biopsies. Therefore, we have developed a method which combines functional assessment of mitochondria through Cytochrome c Oxidase (COX) histochemistry, with a 3D electron microscopy (EM) technique, serial block-face scanning electron microscopy (SBFSEM). Here we apply COX-SBFSEM to muscle samples from patients with single, large-scale mtDNA deletions, a cause of mitochondrial disease. These deletions cause oxidative phosphorylation deficiency, which can be observed through changes in COX activity. One of the main advantages of combining 3D-EM with the COX reaction is the ability to look at how per-mitochondrion oxidative phosphorylation status is spatially distributed within muscle fibres. Here we show a robust spatial pattern in COX-positive and intermediate-fibres and that the spatial pattern is less clear in COX-deficient fibres.
    DOI:  https://doi.org/10.1038/s42003-024-07389-7
  11. Proc Natl Acad Sci U S A. 2025 Jan 07. 122(1): e2423449122
      
    DOI:  https://doi.org/10.1073/pnas.2423449122