bims-miptne Biomed News
on Mitochondrial permeability transition pore-dependent necrosis
Issue of 2024–11–03
ten papers selected by
Oluwatobi Samuel Adegbite, University of Liverpool



  1. Biomedicines. 2024 Oct 15. pii: 2342. [Epub ahead of print]12(10):
       BACKGROUND AND OBJECTIVE: The alteration of mitochondrial functions, especially the opening of the mitochondrial permeability transition pore (mPTP), has been proposed as a key mechanism in the development of lesions in cerebral ischemia, wherefore it is considered as an important target for drugs against ischemic injury. In this study, we aimed to investigate the effects of mitochondrial complex I inhibitors as possible regulators of mPTP using an in vitro brain ischemia model of the pentobarbital/ketamine (PBK)-anesthetized rats.
    RESULTS: We found that PBK anesthesia itself delayed Ca2+-induced mPTP opening and partially recovered the respiratory functions of mitochondria, isolated from rat brain cortex and cerebellum. In addition, PBK reduced cell death in rat brain slices of cerebral cortex and cerebellum. PBK inhibited the adenosine diphosphate (ADP)-stimulated respiration of isolated cortical and cerebellar mitochondria respiring with complex I-dependent substrates pyruvate and malate. Moreover, pentobarbital alone directly increased the resistance of isolated cortex mitochondria to Ca2+-induced activation of mPTP and inhibited complex I-dependent respiration and mitochondrial complex I activity. In contrast, ketamine had no direct effect on functions of isolated normal cortex and cerebellum mitochondria.
    CONCLUSIONS: Altogether, this suggests that modulation of mitochondrial complex I activity by pentobarbital during PBK anesthesia may increase the resistance of mitochondria to mPTP opening, which is considered the key event in brain cell necrosis during ischemia.
    Keywords:  anesthesia; brain ischemia; complex I; mitochondrial permeability transition; sodium pentobarbital
    DOI:  https://doi.org/10.3390/biomedicines12102342
  2. PLoS Biol. 2024 Oct 28. 22(10): e3002854
      The mitochondrial Ca2+ uniporter (MCU) plays crucial role in intramitochondrial Ca2+ uptake, allowing Ca2+-dependent activation of oxidative metabolism. In recent decades, the role of MCU pore-forming proteins has been highlighted in cancer. However, the contribution of MCU-associated regulatory proteins mitochondrial calcium uptake 1 and 2 (MICU1 and MICU2) to pathophysiological conditions has been poorly investigated. Here, we describe the role of MICU2 in cell proliferation and invasion using in vitro and in vivo models of human colorectal cancer (CRC). Transcriptomic analysis demonstrated an increase in MICU2 expression and the MICU2/MICU1 ratio in advanced CRC and CRC-derived metastases. We report that expression of MICU2 is necessary for mitochondrial Ca2+ uptake and quality of the mitochondrial network. Our data reveal the interplay between MICU2 and MICU1 in the metabolic flexibility between anaerobic glycolysis and OXPHOS. Overall, our study sheds light on the potential role of the MICUs in diseases associated with metabolic reprogramming.
    DOI:  https://doi.org/10.1371/journal.pbio.3002854
  3. Biomolecules. 2024 Oct 17. pii: 1318. [Epub ahead of print]14(10):
      Bone is a dynamic organ with an active metabolism and high sensitivity to mitochondrial dysfunction. The mitochondrial permeability transition pore (mPTP) is a low-selectivity channel situated in the inner mitochondrial membrane (IMM), permitting the exchange of molecules of up to 1.5 kDa in and out of the IMM. Recent studies have highlighted the critical role of the mPTP in bone tissue, but there is currently a lack of reviews concerning this topic. This review discusses the structure and function of the mPTP and its impact on bone-related cells and bone-related pathological states. The mPTP activity is reduced during the osteogenic differentiation of mesenchymal stem cells (MSCs), while its desensitisation may underlie the mechanism of enhanced resistance to apoptosis in neoplastic osteoblastic cells. mPTP over-opening triggers mitochondrial swelling, regulated cell death, and inflammatory response. In particular, mPTP over-opening is involved in dexamethasone-induced osteoblast dysfunction and bisphosphonate-induced osteoclast apoptosis. In vivo, the mPTP plays a significant role in maintaining bone homeostasis, with many bone disorders linked to its excessive opening. Genetic deletion or pharmacological inhibition of the over-opening of mPTP has shown potential in enhancing bone injury recovery and alleviating bone diseases. Here, we review the findings on the relationship of the mPTP and bone at both the cellular and disease levels, highlighting novel avenues for pharmacological approaches targeting mitochondrial function to promote bone healing and manage bone-related disorders.
    Keywords:  bone healing; inflammatory bone loss; mitochondria; mitochondrial dysfunction; mitochondrial permeability transition pore; osteoporosis
    DOI:  https://doi.org/10.3390/biom14101318
  4. PLoS One. 2024 ;19(10): e0312853
      Phosphoglycerate mutase/protein phosphatase (PGAM5)-mediated cell death plays an important role in multiple liver diseases. However, few studies have confirmed the regulatory mechanism of melatonin acting on PGAM5-mediated cell death in the context of liver ischemia-reperfusion (I/R) injury. The liver I/R injury model and cell hypoxia-reoxygenation model were established after melatonin pretreatment. Liver injury, cell activity, cell apoptosis, oxidative stress index, and PGAM5 protein expression were detected. To investigate the role of PGAM5 in melatonin-mediated liver protection during I/R injury, PGAM5 silencing, and overexpression were performed before melatonin pretreatment. Our results indicated that PGAM5 was significantly elevated by I/R injury, and predominantly localized in the necrosis area. However, treatment with melatonin blocked PGAM5 activation and conferred a survival advantage of hepatocytes in liver I/R injury, similar to the results achieved by silencing PGAM5. In terms of mechanism, we illustrated that activated PGAM5 promoted mitochondrial permeability transition pore (mPTP) opening, and administration of melatonin inhibited mPTP opening and interrupted hepatocytes death via blocking PGAM5. Our data indicated that the PGAM5-mPTP axis is responsible for I/R-induced liver injury. In contrast, melatonin supplementation blocked the PGAM5-mPTP axis and thus decreased cell death, providing a protective advantage to hepatocytes in I/R. These results established a new paradigm in melatonin-mediated hepatocyte protection under the burden of I/R attack.
    DOI:  https://doi.org/10.1371/journal.pone.0312853
  5. Adv Sci (Weinh). 2024 Oct 30. e2405406
      Mitochondrial permeability transition pore (mPTP) opening is a key hallmark of injured type II alveolar epithelial cells (AECIIs) in idiopathic pulmonary fibrosis (IPF). Inhibiting mPTP opening in AECIIs is considered a potential IPF treatment. Herein, a "double braking" strategy on mPTP by cyclosporin A (CsA) derived ionizable lipid with 3D structure (3D-lipid) binding cyclophilin D (CypD) and siRNA downregulating mitochondrial calcium uniporter (MCU) expression is proposed for treating IPF. 3D-lipid and MCU targeting siRNA (siMCU) are co-assembled to form stable 3D-LNP/siMCU nanoparticles (NPs), along with helper lipids. In vitro results demonstrated that these NPs effectively inhibit mPTP opening by 3D-lipid binding with CypD and siRNA downregulating MCU expression, thereby decreasing damage-associated molecular patterns (DAMPs) release and suppressing epithelial-to-mesenchymal transition (EMT) process in bleomycin-induced A549 cells. In vivo results revealed that 3D-LNP/siMCU NPs effectively ameliorated collagen deposition, pro-fibrotic factors secretion, and fibroblast activation in bleomycin-induced pulmonary fibrosis (PF) mouse models. Moreover, compared to the commercial MC3-based formulation, optimized Opt-MC3/siRNA NPs with incorporating 3D-lipid as the fifth component, showed superior therapeutic efficacy against PF due to their enhanced stability and higher gene silencing efficiency. Overall, the nanomedicine containing 3D-lipid and siMCU will be a promising and potential approach for IPF treatment.
    Keywords:  cyclosporin A; idiopathic pulmonary fibrosis; ionizable lipid; lipid nanoparticle; siRNA delivery
    DOI:  https://doi.org/10.1002/advs.202405406
  6. Pharmaceutics. 2024 Sep 29. pii: 1272. [Epub ahead of print]16(10):
      Background: Research has shown the multiple actions of curcumin on different cell systems, including enzymes and mitochondria. The detected effects of curcumin on mitochondria are diverse, ranging from protective to toxic. Objectives: In this present work, the influence of curcumin, as well as cinnamic acid, which is a microbial metabolite and a possible product of the microbial breakdown of curcumin, on isolated mitochondria, was investigated. Methods: Membrane potential, swelling, respiration, and calcium retention capacity were studied using selective electrodes, fluorescence and spectral methods. Results: It was found that curcumin at low concentrations (10-20 μM) activated the opening of the calcium-dependent permeability transition pore (mPTP) and decreased the calcium retention capacity and threshold concentrations necessary for the mPTP opening. Moreover, curcumin caused a concentration-dependent stepwise decrease in the membrane potential, accompanied by the activation of respiration and a decrease in oxidative phosphorylation, which indicates that curcumin is a typical mitochondrial uncoupler. The uncoupling effect strongly depended on the concentration of curcumin, which also increased, stepwise, from weak uncoupling at 25 µM to complete uncoupling at 75-100 µM. Cinnamic acid had similar effects, with the exception of the depolarizing effect, at concentrations that were an order of magnitude higher. Conclusions: Presumably, the uncoupling action of curcumin is a priming event that modulates any energy- and redox-dependent mitochondrial functions, from positive stimulation to toxic disorder. This effect can also underlie the curcumin-induced changes in different cellular processes and be achieved by targeted delivery of curcumin to certain cells, bypassing the microbiota.
    Keywords:  cinnamic acid; curcumin; dehydrogenases; membrane potential; microbiota; mitochondria; mitochondrial permeability transition pore; swelling; uncoupling
    DOI:  https://doi.org/10.3390/pharmaceutics16101272
  7. Cancer Sci. 2024 Oct 31.
      Cancer cells rely on mitochondrial oxidative phosphorylation (OXPHOS) and the noncanonical tricarboxylic acid (TCA) cycle. In this paper, we shed light on the vital role played by the noncanonical TCA cycle in a host-side concession to mitochondria, especially in highly energy-demanding malignant tumor cells. Inhibition of ATP-citrate lyase (ACLY), a key enzyme in the noncanonical TCA cycle, induced apoptosis by increasing reactive oxygen species levels and DNA damage while reducing mitochondrial membrane potential. The mitochondrial membrane citrate transporter inhibitor, CTPI2, synergistically enhanced these effects. ACLY inhibition reduced cytosolic citrate levels and CTPI2 lowered ACLY activity, suggesting that the noncanonical TCA cycle is sustained by a positive feedback mechanism. These inhibitions impaired ATP production, particularly through OXPHOS. Metabolomic analysis of mitochondrial and cytosolic fractions revealed reduced levels of glutathione pathway-related and TCA cycle-related metabolite, except fumarate, in mitochondria following noncanonical TCA cycle inhibition. Despite the efficient energy supply to the cell by mitochondria, this symbiosis poses challenges related to reactive oxygen species and mitochondrial maintenance. In conclusion, the noncanonical TCA cycle is indispensable for the canonical TCA cycle and mitochondrial integrity, contributing to mitochondrial domestication.
    Keywords:  ATP‐citrate lyase; antimetabolites; apoptosis; cancer metabolism; cell lines; hematopoietic organ; mitochondria; noncanonical TCA cycle; others; reactive oxygen species
    DOI:  https://doi.org/10.1111/cas.16347
  8. Sci Adv. 2024 Nov;10(44): eadp7725
      The mitochondrial adenosine 5'-diphosphate (ADP)/adenosine 5'-triphosphate (ATP) carrier imports ADP into the mitochondrion and exports ATP to the cell. Here, we demonstrate that 3.3 positive charges are translocated with the negatively charged substrate in each transport step. They can be assigned to three positively charged residues of the central substrate-binding site and two asparagine/arginine pairs. In this way, the membrane potential stimulates not only the ATP4- export step, as a net -0.7 charge is transported, but also the ADP3- import step, as a net +0.3 charge is transported with the electric field. These positive charge movements also inhibit the import of ATP and export of ADP in the presence of a membrane potential, allowing these nucleotides to be maintained at high concentrations in the cytosol and mitochondrial matrix to drive the hydrolysis and synthesis of ATP, respectively. Thus, this is the mechanism by which the membrane potential drives adenine nucleotide exchange with high directional fluxes to fuel the cellular processes.
    DOI:  https://doi.org/10.1126/sciadv.adp7725
  9. Biomolecules. 2024 Oct 15. pii: 1304. [Epub ahead of print]14(10):
      Mitochondria serve as central hubs for regulating numerous cellular processes that include metabolism, apoptosis, cell cycle progression, proliferation, differentiation, epigenetics, immune signaling, and aging. The voltage-dependent anion channel 1 (VDAC1) functions as a crucial mitochondrial gatekeeper, controlling the flow of ions, such as Ca2+, nucleotides, and metabolites across the outer mitochondrial membrane, and is also integral to mitochondria-mediated apoptosis. VDAC1 functions in regulating ATP production, Ca2+ homeostasis, and apoptosis, which are essential for maintaining mitochondrial function and overall cellular health. Most cancer cells undergo metabolic reprogramming, often referred to as the "Warburg effect", supplying tumors with energy and precursors for the biosynthesis of nucleic acids, phospholipids, fatty acids, cholesterol, and porphyrins. Given its multifunctional nature and overexpression in many cancers, VDAC1 presents an attractive target for therapeutic intervention. Our research has demonstrated that silencing VDAC1 expression using specific siRNA in various tumor types leads to a metabolic rewiring of the malignant cancer phenotype. This results in a reversal of oncogenic properties that include reduced tumor growth, invasiveness, stemness, epithelial-mesenchymal transition. Additionally, VDAC1 depletion alters the tumor microenvironment by reducing angiogenesis and modifying the expression of extracellular matrix- and structure-related genes, such as collagens and glycoproteins. Furthermore, VDAC1 depletion affects several epigenetic-related enzymes and substrates, including the acetylation-related enzymes SIRT1, SIRT6, and HDAC2, which in turn modify the acetylation and methylation profiles of histone 3 and histone 4. These epigenetic changes can explain the altered expression levels of approximately 4000 genes that are associated with reversing cancer cells oncogenic properties. Given VDAC1's critical role in regulating metabolic and energy processes, targeting it offers a promising strategy for anti-cancer therapy. We also highlight the role of VDAC1 expression in various disease pathologies, including cardiovascular, neurodegenerative, and viral and bacterial infections, as explored through siRNA targeting VDAC1. Thus, this review underscores the potential of targeting VDAC1 as a strategy for addressing high-energy-demand cancers. By thoroughly understanding VDAC1's diverse roles in metabolism, energy regulation, mitochondrial functions, and other cellular processes, silencing VDAC1 emerges as a novel and strategic approach to combat cancer.
    Keywords:  VDAC1; metabolism; mitochondria; siRNA; stem cells
    DOI:  https://doi.org/10.3390/biom14101304
  10. J Biol Chem. 2024 Oct 29. pii: S0021-9258(24)02451-7. [Epub ahead of print] 107949
      The elusiveness of triple-negative breast cancer from targeted therapy has redirected focus towards exploiting the metabolic shortcomings of these highly metastatic subtypes of breast cancer. Cueing from the metabolic heterogeneity of TNBC and the exposition of the dual dependence of some TNBCs on OXPHOS and glycolysis for ATP, we herein report the efficacy of cotreatment of TNBCs with an OXPHOS inhibitor, 2a and 2DG, a potent glycolysis inhibitor. 2a-2DG cotreatment inhibited TNBC cell proliferation with IC50 of ∼5 to 36 times lower than that of 2a alone and over 5000 times lower than IC50 of 2DG alone. 2a-2DG cotreatment suppressed mitochondrial ATP production and significantly induced AMPK activation. Mechanistic studies revealed the distinct yet synergistic contributions of 2a and 2DG to the antiproliferative effect of the cotreatment. While 2a induced apoptotic cell death, 2DG sensitized TNBCs to the antiproliferative effects of 2a via endoplasmic reticulum stress induction. Strikingly, the combination of 2a-2DG ablated SUM159 tumors in an orthotopic xenograft mouse model. This study highlights the synergistic effect of a gold-based complex with 2DG and the potential benefit of multi-metabolic pathways targeting as an effective therapeutic strategy against TNBCs.
    DOI:  https://doi.org/10.1016/j.jbc.2024.107949