bims-miptne Biomed News
on Mitochondrial permeability transition pore-dependent necrosis
Issue of 2024–12–22
one paper selected by
Oluwatobi Samuel Adegbite, University of Liverpool



  1. J Gen Physiol. 2025 Jan 06. pii: e202313520. [Epub ahead of print]157(1):
      Cardiac ischemia followed by reperfusion results in cardiac cell death, which has been attributed to an increase of mitochondrial Ca2+ concentration, resulting in activation of the mitochondrial permeability transition pore (PTP). Evaluating this hypothesis requires understanding of the mechanisms responsible for control of mitochondrial Ca2+ in physiological conditions and how they are altered during both ischemia and reperfusion. Ca2+ influx is thought to occur through the mitochondrial Ca2+ uniporter (MCU). However, with deletion of the MCU, an increase in mitochondrial Ca2+ still occurs, suggesting an alternative Ca2+ influx mechanism during ischemia. There is less certainty about the mechanisms responsible for Ca2+ efflux, with contributions from both Ca2+/H+ exchange and a Na+-dependent Ca2+ efflux pathway. The molecular details of both mechanisms are not fully resolved. We discuss this and the contributions of both pathways to the accumulation of mitochondrial Ca2+ during ischemia and reperfusion. We further discuss the role of mitochondrial Ca2+ in activation of the PTP.
    DOI:  https://doi.org/10.1085/jgp.202313520