bims-miptne Biomed News
on Mitochondrial permeability transition pore-dependent necrosis
Issue of 2025–02–09
eleven papers selected by
Oluwatobi Samuel Adegbite, University of Liverpool



  1. NPJ Metab Health Dis. 2025 ;3(1): 4
      Calcium signaling plays a pivotal role in diverse cellular processes through precise spatiotemporal regulation and interaction with effector proteins across distinct subcellular compartments. Mitochondria, in particular, act as central hubs for calcium buffering, orchestrating energy production, redox balance and apoptotic signaling, among others. While controlled mitochondrial calcium uptake supports ATP synthesis and metabolic regulation, excessive accumulation can trigger oxidative stress, mitochondrial membrane permeabilization, and cell death. Emerging findings underscore the intricate interplay between calcium homeostasis and mitophagy, a selective type of autophagy for mitochondria elimination. Although the literature is still emerging, this review delves into the bidirectional relationship between calcium signaling and mitophagy pathways, providing compelling mechanistic insights. Furthermore, we discuss how disruptions in calcium homeostasis impair mitophagy, contributing to mitochondrial dysfunction and the pathogenesis of common neurodegenerative diseases.
    Keywords:  Metabolic disorders; Mitochondria
    DOI:  https://doi.org/10.1038/s44324-025-00049-2
  2. J Virol. 2025 Feb 06. e0217724
      Seneca Valley virus (SVV), also known as Senecavirus A, a porcine pathogen that causes vesicular diseases, is prevalent in pig herds worldwide. SVV infection induces endoplasmic reticulum (ER) stress in PK-15 and BHK-21 cells, accompanied by activation of the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) and activating transcription factor 6 (ATF6) pathways, which in turn facilitates SVV replication. ER stress is associated with the regulation of Ca2+ homeostasis and mitochondrial apoptosis. However, the precise role of Ca2+ in SVV-induced apoptosis remains unclear. In this study, western blotting, flow cytometry, and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) detection revealed that either ER stress or the PERK pathway is involved in the apoptosis of SVV-infected cells treated with specific inhibitors. Furthermore, SVV-mediated ER stress markedly contributed to the transfer of Ca2+ from the ER to mitochondria. The subsequent increase in mitochondrial Ca2+ content was accompanied by an increased number of ER membranes near the mitochondria. Finally, the inhibition of mitochondrial Ca2+ overload, ER stress, and the PERK pathway substantially attenuated SVV-mediated mitochondrial dysfunction, as evidenced by analyzing mitochondrial membrane potential (MMP), mitochondrial permeability transition poremPTP, reactive oxygen speciesROS, and adenosine 5'-triphosphate ATP, and the levels of mitochondrial apoptosis. These findings demonstrate that SVV induces mitochondrial apoptosis, which is dependent on ER stress-mediated transmission of Ca2+ from the ER to the mitochondria.
    IMPORTANCE: Viruses have developed multiple mechanisms to facilitate their proliferation or persistence through manipulating various organelles in cells. Seneca Valley virus (SVV), as a novel emerging pathogen associated with vesicular disease, is clinically and economically important infections that affect farm animals. Previously, we had confirmed that SVV-induced endoplasmic reticulum (ER) stress benefited for viral replication. Ca2+, as an intracellular signaling messenger mainly stored in the ER, is regulated by ER stress and then involved in apoptosis. However, the precise mechanism that Ca2+ transfer induced by SVV infection triggered apoptosis remained unclear. Here, we found that SVV infection triggered the Ca2+ transform from ER to mitochondria, resulting in mitochondrial dysfunction, and finally induced mitochondrial apoptosis. Our study shed light on a novel mechanism revealing how ER stress manipulates Ca2+ homeostasis to induce mitochondrial apoptosis and regulate viral proliferation.
    Keywords:  Ca2+; ER stress; Seneca Valley virus; apoptosis; mitochondrial dysfunction
    DOI:  https://doi.org/10.1128/jvi.02177-24
  3. Life Sci. 2025 Feb 04. pii: S0024-3205(25)00077-3. [Epub ahead of print] 123444
      CRBN (Cereblon), a substrate receptor of the CRL4 (Cullin4-RING E3 ubiquitin ligase) complex, has emerged as a key player in cancer metabolism. While its role in influencing metabolic phenotypes has been suggested, the precise functions of CRBN in cellular metabolism and cancer progression remain underexplored. This study investigates the impact of CRBN downregulation in lung cancer, focusing on mitochondrial metabolism and cellular functions. Data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) revealed significant reductions in CRBN expression at both mRNA and protein levels in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). This downregulation was further confirmed in most lung cancer cell lines examined. Functional analyses of CRBN knockout (KO) cells revealed substantial alterations in mitochondrial metabolism, including enhanced oxidative phosphorylation, increased mitochondrial membrane potential (ΔΨm), and elevated production of mitochondrial reactive oxygen species (mROS). CRBN deficiency also accelerated tricarboxylic acid (TCA) cycle flux and increased mitochondrial calcium accumulation, contributing to elevated ΔΨm and potentially compromised mitochondrial integrity. Additionally, CRBN KO cells demonstrated increased cell migration, which could be mitigated by inhibiting mitochondrial calcium import. These findings suggest that CRBN plays a pivotal role in regulating mitochondrial function and metabolic activity in non-small cell lung cancer. The loss of CRBN enhances mitochondrial metabolism and contributes to increased cancer cell migration, providing new insights into the metabolic adaptations associated with CRBN deficiency in cancer progression.
    Keywords:  Cereblon; Lung cancer; Mitochondrial activity; Mitochondrial calcium accumulation
    DOI:  https://doi.org/10.1016/j.lfs.2025.123444
  4. Biophys J. 2025 Jan 30. pii: S0006-3495(25)00036-0. [Epub ahead of print]
      Structural heterogeneity in the distribution of ryanodine receptor (RyR) clusters in cardiac myocytes has been shown to have pro-arrhythmic effects. The presence of a mixture of large and small RyR clusters can potentiate arrhythmogenic calcium (Ca2+) waves. RyRs are subject to post-translational modifications (PTMs), such as phosphorylation, which are linked to heart failure and other pathological conditions. This study aims to investigate how PTMs interact with the structural heterogeneity of RyR clusters and further increase heterogeneous Ca2+ release activities in cardiac myocytes. Using a physiologically detailed 3-dimensional ventricular myocyte model containing approximately two million stochastic RyR channels, we simulated heterogeneous distributions of RyR clusters with and without PTMs. The results demonstrate that Ca2+ cycling and RyR phosphorylation by Ca2+/calmodulin-dependent protein kinase II (CaMKII) create a positive feedback loop, which increases functional heterogeneity in the Ca2+ spark size distribution. In large clusters, Ca2+ leak is substantial due to the large flux (number of channels recruited), leading to increased local Ca2+ concentrations, CaMKII activation, and further RyR sensitization, amplifying the leak. Conversely, in small clusters, the leak is limited, and sensitization is restricted. Furthermore, CaMKII activation can enhance late sodium (Na+) current, increasing Na+ influx and subsequently raising Ca2+ levels via the Na+-Ca2+ exchanger, further promoting Ca2+ leak and functional heterogeneity. We conclude that such positive feedback processes play a crucial role in arrhythmogenic Ca2+ wave initiation and propagation, particularly in heart failure myocytes where PTMs are often dysregulated.
    Keywords:  CaMKII; Cardiac calcium cycling; RyRs; post-translational modifications
    DOI:  https://doi.org/10.1016/j.bpj.2025.01.023
  5. Redox Biol. 2025 Jan 28. pii: S2213-2317(25)00031-X. [Epub ahead of print]80 103518
       PURPOSE: This research explores the consequences of being exposed to PM2.5 contribute to renal injury while also evaluating the protective role of Vitamin D-VDR signaling in alleviating mitochondrial calcium imbalance and oxidative stress in renal tubular cells.
    METHODS: Animal models of chronic PM2.5 exposure were used to simulate environmental conditions in wild type and VDR-overexpressing mice specific to renal tubules. In parallel, HK-2 cell lines were treated with PM2.5 in vitro. Mitochondrial function, calcium concentration, and oxidative stress markers were assessed. VDR activation, achieved through genetic overexpression and paricalcitol, was induced to examine its effect on mitochondrial calcium uniporter (MCU) expression and mitochondrial calcium regulation.
    RESULTS: PM2.5 exposure caused significant mitochondrial damage in renal tubular cells, including mitochondrial calcium overload, increased oxidative stress, reduced membrane potential, and diminished ATP production. Elevated MCU expressions were a key contributor to these disruptions. VDR activation effectively reversed these effects by downregulating MCU, restoring mitochondrial calcium balance, reducing oxidative stress, and improving renal function.
    CONCLUSION: This study shows that activating Vitamin D-VDR signaling shields the kidneys from PM2.5-induced damage by reestablishing mitochondrial calcium balance and lowering oxidative stress via inhibition of the MCU. These results unveil a new protective role of VDR in defending against environmental pollutants and suggest that targeting the MCU could offer a potential therapeutic strategy for treating chronic kidney disease linked to pollution exposure.
    Keywords:  Fine particulate matter; Kidney injury; MCU; Mitochondrial calcium overload; Oxidative stress; VDR
    DOI:  https://doi.org/10.1016/j.redox.2025.103518
  6. Neoplasia. 2025 Feb 03. pii: S1476-5586(25)00004-1. [Epub ahead of print]61 101125
      Over 60% of breast cancer cases are diagnosed with estrogen-receptor (ER) positive. Tamoxifen (TAM), a commonly employed medication for ER-positive breast cancer, often yields suboptimal therapeutic outcomes due to the emergence of TAM resistance, leading to the recurrence and a poor prognosis. The copper transporter, solute carrier family 31 member 1 (SLC31A1), has been associated with tumor aggressiveness and unfavorable outcomes in various types of tumors. In our current study, we found high expression of SLC31A1 that predicted poor survival in patients with breast cancer. Significantly, ER-positive breast cancer tissues in patients with recurrence post-TAM treatment exhibited considerably stronger SLC31A1 expression levels. In vitro experiments verified that TAM-resistant ER-positive breast cancer cell lines expressed notably higher SLC31A1 levels compared to the parental cell lines. Of great significance, SLC31A1 depletion notably rescued TAM sensitivity in chemoresistant ER-positive breast cancer cells, as demonstrated by the attenuated cell proliferative and invasive capabilities. Conversely, promoting SLC31A1 significantly facilitated the proliferation and invasion of wild-type breast cancer cells. Subsequently, we detected reduced copper levels in TAM-resistant breast cancer cells with SLC31A1 depletion. Mechanistically, we observed that in chemoresistant breast cancer cell lines, SLC31A1 knockdown resulted in a substantial decrease in the expression of carnitine palmitoyltransferase 1A (CPT1A), a rate-limiting enzyme of fatty acid oxidation (FAO). RNA-Seq analysis indicated that FAO might be implicated in SLC31A1-mediated breast cancer progression. CPT1A was also overexpressed in TAM-resistant breast cancer cells, accompanied by enhanced FAO rates and ATP levels. Suppressing CPT1A significantly enhanced the chemosensitivity of TAM-resistant breast cancer cells in response to TAM treatments. Intriguingly, copper exposure dose-dependently increased CPT1A expression in chemoresistant breast cancer cells, but this could be abolished upon SLC31A1 knockdown, along with enhanced apoptosis, which elucidated that copper uptake contributed to CPT1A expression. Furthermore, SLC31A1 overexpression significantly augmented CPT1A expression in parental breast cancer cells, accompanied by facilitated copper levels, FAO rates, and ATP levels, while being notably diminished upon CPT1A suppression. Finally, our in vivo studies confirmed that SLC31A1 deficiency re-sensitized TAM-resistant breast cancer cells to TAM treatment and abolished tumor growth. Collectively, all our studies demonstrated that SLC31A1/copper suppression could enhance TAM responses for chemoresistant ER-positive breast cancer cells through constraining the CPT1A-mediated FAO process.
    Keywords:  CPT1A; ER-positive breast cancer; FAO; SLC31A1; Tamoxifen resistance
    DOI:  https://doi.org/10.1016/j.neo.2025.101125
  7. J Cardiovasc Transl Res. 2025 Feb 07.
      Ischemic heart disease (IHD), especially acute myocardial infarction (AMI), has a high mortality rate and poses a great threat to human health. When myocardial infarction occurs, the structure and function of the myocardium are significantly damaged, and its metabolisms switch from oxidative phosphorylation to glycolysis, producing lactate. Lactylation, as a newly discovered post-translational modification (PMT) in recent years, is involved in the regulation of gene expression, and cell proliferation. Emerging studies have revealed that lactate and lactylation modifications participate in inflammation and cardiac repair, and play an important role in cardiovascular diseases, such as myocardial infarction, myocardial fibrosis, and heart failure. Therefore, in this review, we discuss how glucose metabolism, glycolytic end-product lactate, and lactylation potentially interact with pathological processes, including inflammation, cardiac fibrosis, and heart failure. And targeting glycolysis and lactylation modification could provide a promising future for cardiovascular diseases.
    Keywords:  Cardiovascular disease; Lactate; Lactylation; Metabolism; Myocardial infarction
    DOI:  https://doi.org/10.1007/s12265-025-10593-3
  8. Hereditas. 2025 Feb 03. 162(1): 16
       BACKGROUND: Mitochondrial permeability transition (MPT)-driven necrosis (MPTDN) is a non-apoptotic mode of cell death triggered by oxidative stress and cytosolic Ca2+ overload. Recent evidence suggests that activation of MPTND can effectively induce cancer cell death and may represent a novel therapeutic strategy for cancer. Yet, the role of MPTDN-related genes in non-small cell lung cancer (NSCLC) remains unrevealed. This study aimed to identify MPTDN-related biomarkers for predicting prognosis and guiding treatment in NSCLC.
    METHODS: Gene expression profiles and clinical information of NSCLC were collected from public databases, and MPTDN-related genes were obtained from published article. Differential expressed MPTDN-related genes in NSCLC and control were screened, and molecular clusters were obtained. Based on the differentially expressed genes (DGEs) between clusters, univariate Cox and LASSO regression analyses were performed to screen biomarkers, followed by nomogram construction. Correlations between these biomarkers and immune cell infiltration, immune checkpoints, and chemotherapeutic agents were observed. Expression levels of MPTDN-related biomarkers were detected using RT-qPCR in NSCLC tissues and cells. Moreover, the biological function of ARL14 in NSLCL was verified in vitro.
    RESULTS: Thirty-five differential MPTDN-related genes were identified, and two molecular clusters were obtained. Three biomarkers with prognostic values were finally screened, including ARL14, ZDHHC11B, and HLF. Among them, ARL14 was significantly upregulated in tumor samples, while ZDHHC11B and HLF were downregulated. Nomogram containing three genes exhibited predictive accuracy in 1, 3, and 5-year survival rates. Three gene were strongly associated with most immune cells, immune checkpoints, and drugs sensitivity. RT-qPCR confirmed that expression levels of three genes in tissues or cells were consistent with the results of bioinformatics analysis. Finally, ARL14 knockdown inhibited the malignant phenotype of NSCLC cells.
    CONCLUSION: We first performed the comprehensive analysis of MPTDN in NSCLC and screened three NSCLC-related biomarkers as promising biomarkers. ARL14 might be a new potential target for therapy of NSCLC.
    Keywords:  ARL14; Biomarker; Immune microenvironment; Mitochondrial permeability transition-driven necrosis; Non-small cell lung cancer; Prognosis
    DOI:  https://doi.org/10.1186/s41065-025-00379-7
  9. Int J Biol Sci. 2025 ;21(3): 1202-1221
      The interplay between metabolic pathways and immune escape has emerged as a captivating research area in oncobiology. Among these, the Warburg effect stands out as a hallmark metabolic reprogramming in cancer, characterized by elevated glucose utilization and excessive lactic acid production through anaerobic glycolysis. Key glycolytic enzymes not only fulfill the bioenergetic demands of cancer cells but also exhibit moonlighting roles, including regulation of epigenetic modifications, protein kinase activity, and immune escape mechanisms, thereby reshaping the tumor microenvironment. Tumor-specific vascular architecture facilitates lactate accumulation, which drives tumor progression by impairing immune cell function and acting as a signaling molecule to recruit immunosuppressive cells and modulate immune checkpoint pathways. The PD-1/PD-L1 co-stimulatory pathway plays a crucial role in negatively modulating the activation, proliferation, and cytokine secretion by T-lymphocytes. This review primarily focuses on elucidating the regulation and mechanisms underlying PD-1/PD-L1 signaling axis during glycolysis in tumor cells as well as surrounding cells. In the era of precision medicine, there is a particular interest in leveraging 18F-FDG PET/CT imaging as a valuable tool to assess PD-L1 expression status for more targeted therapeutic interventions. Additionally, the development of natural compounds capable of modulating metabolism opens new avenues for metabolism-based immunotherapy, though further studies are required to validate their in vivo efficacy.
    Keywords:  Glycolysis; Lactate; PD-1/PD-L1; Tumor microenvironment; immunotherapy
    DOI:  https://doi.org/10.7150/ijbs.104079
  10. Med Oncol. 2025 Feb 01. 42(3): 60
      Tumor metabolic reprogramming, particularly involving mitochondrial metabolism, is a hallmark of malignancy. The mitochondrial protein p32 (C1QBP) has emerged as a critical regulator in various cancers, frequently associated with poor patient prognosis. However, the role of p32 across different cancer types remains largely unexplored. Our bioinformatics analysis demonstrates that p32 is significantly overexpressed in several malignancies and is closely involved in multiple oncogenic pathways related to tumor progression and metabolic reprogramming. Moreover, p32 expression positively correlates with genomic heterogeneity and drug sensitivity. We identified a strong association between p32 and c-Myc in both normal and cancerous tissues. We confirmed that p32 is a direct transcriptional target of c-Myc, which upregulates p32 by binding to its promoter. Functional experiments established that p32 is crucial for MYC-driven tumorigenesis, with its knockdown or knockout inhibiting tumor proliferation and extending survival. Targeting p32 may inhibit MYC-driven tumorigenesis, highlighting its potential as a therapeutic target in MYC-driven cancers.
    Keywords:  Bioinformatics; Mitochondrial metabolism; Pan-cancer analysis; Tumorigenesis; c-Myc; p32
    DOI:  https://doi.org/10.1007/s12032-025-02604-9
  11. Function (Oxf). 2025 Feb 07. pii: zqaf006. [Epub ahead of print]
      Hypertension is a major risk factor of cardiovascular disease affecting nearly half of adult population, but only 25% patients have their blood pressure under control. Hypertension is associated with mitochondrial dysfunction; however, its molecular mechanisms and causative role are still elusive. Understanding these mechanisms is important to develop new therapies. Cyclophilin D (CypD) promotes mitochondrial swelling and dysfunction. The objective of this study is to test if CypD depletion attenuates vascular dysfunction and hypertension. To test this hypothesis, we used endothelial-specific and smooth muscle-specific CypD knockout mice in angiotensin II model of vascular dysfunction and hypertension. Our results show that depletion of endothelial CypD prevents angiotensin II-induced impairment of endothelial-dependent vasorelaxation, preserves endothelial nitric oxide and mitochondrial respiration, reduces hypertension, vascular oxidative stress and vascular metabolic glycolytic-switch compared with wild-type littermates. Depletion of smooth muscle CypD slightly reduces angiotensin II-induced hypertension, partially attenuates reduction in vascular nitric oxide and vasorelaxation, abolishes vascular superoxide overproduction, diminishes angiotensin II-induced vascular glycolysis, hypertrophy and fibrosis. Our data showed an intriguing "metabolic" and "redox" crosstalk between endothelial and smooth muscle cells. Depletion of endothelial CypD reduces not only angiotensin II-induced endothelial glycolysis but also attenuates smooth muscle cell glycolytic switch. Interestingly, depletion of smooth muscle CypD was also not limited to the effect on smooth muscle glycolysis, but it also reduced endothelial cell glycolysis. Vascular oxidative stress was inhibited both in EcCypDKO and SmcCypDKO mice, therefore, cell-specific CypD depletion had a "global" antioxidant effect on the entire vasculature. Our results support a novel function of mitochondrial CypD in regulation of superoxide production and metabolism of vascular smooth muscle and endothelial cells which affect endothelial barrier and smooth muscle vascular functions. We suggest that blocking vascular CypD reduces vascular oxidative stress, improves vascular metabolism and vascular function which may be beneficial in cardiovascular disease.
    Keywords:  Cyclophilin D, superoxide; Hypertension; glycolysis; mitochondria; vascular dysfunction
    DOI:  https://doi.org/10.1093/function/zqaf006