bims-mireme Biomed News
on Mitochondria in regenerative medicine
Issue of 2021‒07‒11
nine papers selected by
Brian Spurlock
The University of North Carolina at Chapel Hill


  1. J Vis Exp. 2021 Jun 21.
      Mitochondrial diseases represent the largest class of inborn errors of metabolism and are currently incurable. These diseases cause neurodevelopmental defects whose underlying mechanisms remain to be elucidated. A major roadblock is the lack of effective models recapitulating the early-onset neuronal impairment seen in the patients. Advances in the technology of induced pluripotent stem cells (iPSCs) enable the generation of three-dimensional (3D) brain organoids that can be used to investigate the impact of diseases on the development and organization of the nervous system. Researchers, including these authors, have recently introduced human brain organoids to model mitochondrial disorders. This paper reports a detailed protocol for the robust generation of human iPSC-derived brain organoids and their use in mitochondrial bioenergetic profiling and imaging analyses. These experiments will allow the use of brain organoids to investigate metabolic and developmental dysfunctions and may provide crucial information to dissect the neuronal pathology of mitochondrial diseases.
    DOI:  https://doi.org/10.3791/62756
  2. Front Cell Dev Biol. 2021 ;9 671704
      Hypoxia-inducible factor 1α (HIF-1α) plays pivotal roles in maintaining pluripotency, and the developmental potential of pluripotent stem cells (PSCs). However, the mechanisms underlying HIF-1α regulation of neural stem cell (NSC) differentiation of human induced pluripotent stem cells (hiPSCs) remains unclear. In this study, we demonstrated that HIF-1α knockdown significantly inhibits the pluripotency and self-renewal potential of hiPSCs. We further uncovered that the disruption of HIF-1α promotes the NSC differentiation and development potential in vitro and in vivo. Mechanistically, HIF-1α knockdown significantly enhances mitofusin2 (MFN2)-mediated Wnt/β-catenin signaling, and excessive mitochondrial fusion could also promote the NSC differentiation potential of hiPSCs via activating the β-catenin signaling. Additionally, MFN2 significantly reverses the effects of HIF-1α overexpression on the NSC differentiation potential and β-catenin activity of hiPSCs. Furthermore, Wnt/β-catenin signaling inhibition could also reverse the effects of HIF-1α knockdown on the NSC differentiation potential of hiPSCs. This study provided a novel strategy for improving the directed differentiation efficiency of functional NSCs. These findings are important for the development of potential clinical interventions for neurological diseases caused by metabolic disorders.
    Keywords:  differentiation; hypoxia-inducible factor 1α; induced pluripotent stem cells; mitofusin2; neural stem cells
    DOI:  https://doi.org/10.3389/fcell.2021.671704
  3. Methods Cell Biol. 2021 ;pii: S0091-679X(20)30212-0. [Epub ahead of print]164 113-118
      Mitophagy is an evolutionally conserved cellular process that eliminates dysfunctional and excess mitochondria, thereby facilitating mitochondrial quality control and metabolic recycling. In addition, mitophagy is essential for cellular homeostasis and tissue development, and mitophagic dysfunction is related to various pathologies including neurodegenerative diseases and cancer. Thus, accurate quantitative measurement of mitophagy is one of the hot topics in the field of mitochondrial research. Fluorescence microscopical technology, one of the most widely used technologies at present, can well explain the occurrence and activity of mitophagy. Here, we introduce in detail an experimental method for the immunofluorescence-based quantitativ determination of mitophagy, which not only servers the in-depth study of mitochondrial homeostasis regulation, but also allows for the analyzing mitochondrial autophagy pathologies such as aging, neurodegenerative diseases and cancer.
    Keywords:  Detection; Fluorescence microscope; Method; MitoTracker; Mitophagy
    DOI:  https://doi.org/10.1016/bs.mcb.2020.12.006
  4. Chemistry. 2021 Jun 11.
      Mitochondria are key organelles that perform vital cellular functions such as those related to cell survival and death. The targeted delivery of different types of cargos to mitochondria is a well-established strategy to study mitochondrial biology and diseases. Of the various existing mitochondrion-transporting vehicles, most suffer from poor cytosolic entry, low delivery efficiency, limited cargo types, and cumbersome preparation protocols, and none was known to be universally applicable for mitochondrial delivery of different types of cargos (small molecules, proteins, and nanomaterials). Herein, two new cell-penetrating, mitochondrion-targeting ligands (named MitoLigand ) that are capable of effectively "tagging" small-molecule drugs, native proteins and nanomaterials are disclosed, as well as their corresponding chemoselective conjugation chemistry. Upon successful cellular delivery and rapid endosome escape, the released native cargos were found to be predominantly localized inside mitochondria. Finally, by successfully delivering doxorubicin, a well-known anticancer drug, to the mitochondria of HeLa cells, we showed that the released drug possessed potent cell cytotoxicity, disrupted the mitochondrial membrane potential and finally led to apoptosis. Our strategy thus paves the way for future mitochondrion-targeted therapy with a variety of biologically active agents.
    Keywords:  cell-penetrating peptides; drug delivery; mitochondria; nanomaterials; proteins; triphenylphosphonium
    DOI:  https://doi.org/10.1002/chem.202101989
  5. Methods Cell Biol. 2021 ;pii: S0091-679X(21)00014-5. [Epub ahead of print]164 95-112
      In the perspective to evaluate the toxicity of drug candidates or the exploration of intracellular signaling pathways of cell stress response and pathophysiological conditions, we propose to evaluate cell death, autophagy, mitochondrial network and energetic metabolism by a series of optimized joint protocols for neonatal primary rat cardiomyocytes or H9c2 cardiac cell line in 96 well microtiter plates. We used Digitoxigenin and Digoxin, two cardiac glycosides, and Rapamycin as control drugs, for inhibition of oxidative stress-induced cell death and autophagy induction, respectively.
    Keywords:  Autophagy; Cell death; Cytotoxicity; Metabolism; Mitochondria; Viability
    DOI:  https://doi.org/10.1016/bs.mcb.2021.02.001
  6. Sci Rep. 2021 Jul 05. 11(1): 13845
      Long-term nicotine intake is associated with an increased risk of myocardial damage and dysfunction. However, it remains unclear whether targeting mitochondrial reactive oxygen species (ROS) prevents nicotine-induced cardiac remodeling and dysfunction. This study investigated the effects of mitoTEMPO (a mitochondria-targeted antioxidant), and resveratrol (a sirtuin activator) , on nicotine-induced cardiac remodeling and dysfunction. Sprague-Dawley rats were administered 0.6 mg/kg nicotine daily with 0.7 mg/kg mitoTEMPO, 8 mg/kg resveratrol, or vehicle alone for 28 days. At the end of the study, rat hearts were collected to analyze the cardiac structure, mitochondrial ROS level, oxidative stress, and inflammation markers. A subset of rat hearts was perfused ex vivo to determine the cardiac function and myocardial susceptibility to ischemia-reperfusion injury. Nicotine administration significantly augmented mitochondrial ROS level, cardiomyocyte hypertrophy, fibrosis, and inflammation in rat hearts. Nicotine administration also induced left ventricular dysfunction, which was worsened by ischemia-reperfusion in isolated rat hearts. MitoTEMPO and resveratrol both significantly attenuated the adverse cardiac remodeling induced by nicotine, as well as the aggravation of postischemic ventricular dysfunction. Findings from this study show that targeting mitochondrial ROS with mitoTEMPO or resveratrol partially attenuates nicotine-induced cardiac remodeling and dysfunction.
    DOI:  https://doi.org/10.1038/s41598-021-93234-4
  7. Front Cardiovasc Med. 2021 ;8 664626
      Cardiac remodeling consisted of ventricular hypertrophy and interstitial fibrosis is the pathological process of many heart diseases. Fibroblasts as one of the major cells in the myocardium regulate the balance of the generation and degeneration of collagen, and these cells transform toward myofibroblasts in pathological state, contributing to the remodeling of the heart. Peroxisome proliferator-activated receptor-γ (PPAR-γ) coactivator-1α (PGC-1α) is vital to the function of mitochondria, which contributes to the energy production and reactive oxidative species (ROS)-scavenging activity in the heart. In this study, we found that fibroblast-specific PGC-1α KO induced cardiac remodeling especially fibrosis, and Angiotensin II (AngII) aggravated cardiac fibrosis, accompanied with a high level of oxidative stress response and inflammation.
    Keywords:  AngII; PGC-1α; cardiac fibroblast; cardiac remodeling; fibrosis
    DOI:  https://doi.org/10.3389/fcvm.2021.664626
  8. Life Sci. 2021 Jul 05. pii: S0024-3205(21)00789-X. [Epub ahead of print] 119803
      Sirtuins are Class III protein deacetylases with seven conserved isoforms. In general, Sirtuins are highly activated under cellular stress conditions in which NAD+ levels are increased. Nevertheless, regulation of Sirtuins extends far beyond the influences of cellular NAD+/NADH ratio and a rapidly expanding body of evidence currently suggests that their expression and catalytic activity are highly kept under control at multiple levels by various factors and processes. Owing to their intrinsic ability to enzymatically target various intracellular proteins, Sirtuins are prominently involved in the regulation of fundamental biological processes including inflammation, metabolism, redox homeostasis, DNA repair and cell proliferation and senescence. In fact, Sirtuins are well established to regulate and reprogram different redox and metabolic pathways under both pathological and physiological conditions. Therefore, alterations in Sirtuin levels can be a pivotal intermediary step in the pathogenesis of several disorders. This review first highlights the mechanisms involved in the regulation of Sirtuins and further summarizes the current findings on the major functions of Sirtuins in cellular redox homeostasis and bioenergetics (glucose and lipid metabolism).
    Keywords:  Antioxidant defense; Metabolism; Oxidative stress; Post-translational modification; Sirtuins; Transcriptional regulation
    DOI:  https://doi.org/10.1016/j.lfs.2021.119803